岩性油气藏 ›› 2021, Vol. 33 ›› Issue (6): 81–92.doi: 10.12108/yxyqc.20210609

• 油气地质 • 上一篇    

渤中凹陷东营组古沉积环境及烃源岩发育模式

阳宏1,2, 刘成林1,2, 王飞龙3, 汤国民3, 李国雄1,2, 曾晓祥1,2, 吴育平1,2   

  1. 1. 中国石油大学 (北京)油气资源与探测国家重点实验室, 北京 102249;
    2. 中国石油大学 (北京)地球科学学院, 北京 102249;
    3. 中海石油 (中国) 有限公司天津分公司, 天津 300452
  • 收稿日期:2021-07-15 修回日期:2021-08-14 发布日期:2021-11-25
  • 通讯作者: 刘成林(1970-),男,博士,教授,博士生导师,主要从事油气资源评价与非常规油气地质方面的教学与研究工作。Email:liucl@cup.edu.cn。 E-mail:liucl@cup.edu.cn
  • 作者简介:阳宏(1998-),男,中国石油大学(北京)在读硕士研究生,主要研究方向为石油地质勘探与油气地球化学。地址:(102249)北京市昌平区府学路18号中国石油大学(北京)。Email:2305591359@qq.com
  • 基金资助:
    国家自然科学基金面上项目“咸化湖盆条件下盐类对地层超压的作用机制研究”(编号:41872127)和中海油天津分公司2020—2022年重大科研计划项目“渤中凹陷东营组烃源岩成源特征、生排烃模式及资源潜力”(编号:CCL2020TJX0NST1266)联合资助

Paleoenvironment and development model of source rocks of Dongying Formation in Bozhong Sag

YANG Hong1,2, LIU Chenglin1,2, WANG Feilong3, TANG Guomin3, LI Guoxiong1,2, ZENG Xiaoxiang1,2, WU Yuping1,2   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    2. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China;
    3. Tianjin Brach of CNOOC, Tianjin 300452, China
  • Received:2021-07-15 Revised:2021-08-14 Published:2021-11-25

摘要: 渤中凹陷发育较厚的东营组泥岩烃源岩,为了明确该套烃源岩特征及发育模式,通过对渤中凹陷东营组烃源岩样品进行有机-无机地球化学实验、全岩-黏土和孢粉分析测试,评价了该套烃源岩品质,并综合Sr/Cu,Mn/Fe等20种元素比值以及Pr/Ph、伽马蜡烷指数、环萜烷比值、碳同位素、低等藻类化石含量和孢粉组合,分析了东营组形成时期的古沉积环境和古生产力,并建立了东营组烃源岩发育模式。结果表明:①东营组泥岩以石英、长石为主,碳酸盐矿物含量较低,而黏土矿物含量较高,质量分数为30%;②东三段与东二段下部有机质丰度高,达到成熟—高成熟阶段,有机质类型均以Ⅱ1—Ⅱ2型为主;③东三段—东一段均为温湿古气候,水体盐度逐渐变淡,水深逐渐变浅,由东三段高水深(70.1 m)变为东一段低水深(26.7 m),陆源侵入和水体氧化条件呈现逐渐增强的趋势,古生产力高低依次为东三段(高)、东二段(中)、东一段(低);④高生产力、还原保存条件主导东营组有机质的富集,而古气候、水深、盐度和陆源输入对有机质的富集产生间接影响。

关键词: 烃源岩, 古沉积环境, 发育模式, 东营组, 渤中凹陷

Abstract: The source rocks of Dongying Formation are relatively thick in Bozhong Sag. It is of great significance to clarify the characteristics and development model of this set of source rocks for promoting three-dimensional conventional and unconventional hydrocarbon exploration in deep and shallow layers of Bozhong Sag. Organicinorganic geochemical experiments, whole rock-clay and sporo-pollen analysis tests were carried out on the source rock samples to evaluate the quality of the source rock of Dongying Formation in Bozhong Sag. Combined the ratios of Sr/Cu, Mn/Fe and Pr/Ph, Gammacerane index, cycloterpane ratio, carbon isotope and low algal pollen content, the paleoenvironment and paleo-productivity during the formation of Dongying Formation were analyzed, and a unique source rock development model of Dongying Formation was established. The results show that: (1) The mudstone of Dongying Formation is mainly composed of quartz and feldspar, with low content of carbonate minerals and high content of clay minerals(with a mass fraction of 30%). (2) The organic matter abundance in the lower part of the third and second members of Dongying Formation is high, reaching the maturehigh maturity stage, and the organic matter is mainly Ⅱ1-Ⅱ2 type. (3) The paleoclimate of Dongying Formation is warm and humid, the water salinity gradually becomes lighter, and the water depth gradually becomes shallower, from the high water depth of E3d3(70.1 m) to the low water depth of E3d1(26.7 m). The terrestrial intrusion and water oxidation conditions gradually increase, and the paleo-productivity successively is E3d3(high) > E3d2(middle) > E3d1(low). (4) High productivity and reductive preservation conditions dominate the enrichment of organic matter in Dongying Formation, while paleoclimate, water depth, salinity and terrigenous input have indirect effects on the enrichment of organic matters.

Key words: source rocks, paleoenvironment, development model, Dongying Formation, Bozhong Sag

中图分类号: 

  • TE122.2
[1] HAO F, ZHOU X H, ZHU Y M, et al. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate,Bohai Bay Basin, China. Organic Geochemistry, 2011, 42(4):323-339.
[2] HU T, PANG X Q, JIANG S, et al. Impact of paleosalinity, dilution, redox, and paleoproductivity on organic matter enrichment in a saline lacustrine rift basin:A case study of paleogene organicrich shale in Dongpu depression, Bohai Bay Basin, eastern China. Energy & Fuels, 2018, 32(4):5045-5061.
[3] 刁帆, 邹华耀, 郝芳, 等. 渤海湾盆地廊固凹陷烃源岩特征及其发育模式. 石油与天然气地质, 2014, 35(3):326-335. DIAO F, ZOU H Y, HAO F, et al. Characteristics and depositional models of source rocks in Langgu Sag, Bohai Bay Basin. Oil & Gas Geology, 2014, 35(3):326-335.
[4] 殷杰, 王权, 郝芳, 等. 渤海湾盆地饶阳凹陷沙一下亚段古湖泊环境与烃源岩发育模式. 地球科学, 2017, 42(7):1209-1222. YIN J, WANG Q, HAO F, et al. Palaeolake environment and depositional model of source rocks of the lower submember of Sha 1 in Raoyang Sag, Bohai Bay Basin. Earth Science, 2017, 42(7):1209-1222.
[5] ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 2004, 206(3/4):289-318.
[6] HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian) Stark Shale member of the Dennis Limestone, Wabaunsee County,Kansas, U.S. A. Chemical Geology, 1992, 99(1/3):65-82.
[7] PATTERSON J H, RAMSDEN A R, DALE L S, et al. Geochemistry and mineralogical residences of trace elements in oil shales from Julia Creek, Queensland, Australia. Chemical Geology, 1986, 55(1/2):1-16.
[8] 高乔, 王兴志, 朱逸青, 等. 川南地区龙马溪组元素地球化学特征及有机质富集主控因素.岩性油气藏, 2019, 31(4):72-84. GAO Q, WANG X Z, ZHU Y Q, et al. Elemental geochemical characteristics and main controlling factors of organic matter enrichment of Longmaxi Formation in southern Sichuan. Lithologic Reserviors, 2019, 31(4):72-84.
[9] DEMAISON G J, MOORE G T. Anoxic environments and oil source bed genesis. AAPG Bulletin, 1980, 64(8):1179-1209.
[10] POWELL T G. Petroleum geochemistry and depositional setting of lacustrine source rocks. Marine and Petroleum Geology, 1986, 3(3):119-200.
[11] KATZ B J. Controls on distribution of lacustrine source rocks through time. AAPG Memoir 50, 1990:132-139.
[12] 李龙, 张新涛, 徐春强, 等. 渤中凹陷西洼区新近系油气分布特征及"脊-断"联控成藏模式. 中国海上油气, 2019, 31(4):27-35. LI L, ZHANG X T, XU C Q, et al. Neogene hydrocarbons distribution characteristics and "ridge-fault" joint control accumulation mode in western Bozhong Sag, Bohai sea. China Offshore Oil and Gas, 2019, 31(4):27-35.
[13] 谢玉洪, 张功成, 沈朴, 等. 渤海湾盆地渤中凹陷大气田形成条件与勘探方向. 石油学报, 2018, 39(11):1199-1210. XIE Y H, ZHANG G C, SHEN P, et al. Formation condition and exploration direction of large gas field in Bozhong Sag of Bohai Bay Basin. Acta Petrolei Sinica, 2018, 39(11):1199-1210.
[14] 任拥军, 杜雨佳, 郭潇潇, 等. 渤中凹陷古近系优质烃源岩特征及分布. 油气地质与采收率, 2015, 22(1):5-13. REN Y J, DU Y J, GUO X X, et al. Characteristics and distribution of Paleogene high-quality source rocks in Bozhong Sag. Petroleum Geology and Recovery Efficiency, 2015, 22(1):5-13.
[15] 王翔宇. 渤海湾盆地渤中凹陷渐新统东营组三段烃源岩预测及评价. 武汉:长江大学, 2019. WANG X Y. Prediction and evaluation of the source rocks of the third member of the Oligocene Dongying Formation in the Bozhong Sag, Bohai Bay Basin. Wuhan:Yangtze University, 2019.
[16] 张参, 阳宏, 王飞龙, 等. 渤中凹陷南洼东营组烃源岩有机地球化学特征. 海洋地质前沿, 2020, 36(11):35-44. ZHANG C, YANG H, WANG F L, et al. Organic geochemistry of the source rocks in the Dongying Formation of the south Bozhong subsag. Marine Geology Frontiers, 2020, 36(11):35-44.
[17] 庞雄奇, 郭永华, 姜福杰, 等. 渤海海域优质烃源岩及其分布预测. 石油与天然气地质, 2009, 30(4):393-397. PANG X Q, GUO Y H, JIANG F J, et al. High-quality source rocks and their distribution prediction in the Bohai Sea waters. Oil & Gas Geology, 2009, 30(4):393-397.
[18] 徐长贵, 于海波, 王军, 等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征. 石油勘探与开发, 2019, 46(1):25-38. XU C G, YU H B, WANG J, et al. Formation conditions and accumlation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin. Petroleum Exploration and Development, 2019, 46(1):25-38.
[19] 谢玉洪. 渤海湾盆地渤中凹陷太古界潜山气藏BZ19-6的气源条件与成藏模式. 石油实验地质, 2020, 42(5):858-866. XIE Y H. Gas resources and accumulation model of BZ19-6 Archean buried-hill large-scale gas reservior in Bozhong Sag, Bohai Bay Basin. Petroleum Geology & Experiment, 2020, 42(5):858-866.
[20] 王德英, 于娅, 张藜, 等. 渤海海域石臼坨凸起大型岩性油气藏成藏关键要素. 岩性油气藏, 2020, 32(1):1-10. WANG D Y, YU Y, ZHANG L, et al. Key factors for reservoir formation of large lithologic reservoirs in Shijiutuo uplift, Bohai Sea. Lithologic Reserviors, 2020, 32(1):1-10.
[21] 王德英, 薛永安, 于海波, 等. 渤中凹陷斜坡类型与新近系油气成藏特征. 中国海上油气, 2019, 31(4):9-18. WANG D Y, XUE Y A, YU H B, et al. Slop types and Neogene hydrocarbon accumulation characteristics of Bozhong Sag in Bohai Sea. China offshore Oil and Gas, 2019, 31(4):9-18.
[22] 黄志龙, 高岗. 石油地质综合研究方法. 北京:石油工业出版社, 2017. HUANG Z L, GAO G. Comprehensive research method of petroleum geology. Beijing:Petroleum Industry Press, 2017.
[23] 任海鹰, 葛运华. 织纳煤田中寨矿区晚二叠世泥岩地球化学特征及沉积环境意义. 中国煤炭地质, 2016, 28(2):7-10. REN H Y, GE Y H. Late Permian mudstone geochemical features and sedimentary enviorment significance in Zhonghai mine area, Zhina Coalfield. Coal Geology of China, 2016, 28(2):7-10.
[24] MORADI A V, SARI A, AKKAYA P. Geochemistry of the Miocene oil shale(Hanili Formation) in the ankr-orum Basin, Central Turkey:Implications for Paleoclimate conditions, source-area weathering,provenance and tectonic setting. Sedimentary Geology, 2016, 341(15):289-303.
[25] AWAN R S, LIU C L, GONG H W, et al. Paleo-sedimentary environment in relation to enrichment of organic matter of Early Cambrian black rocks of Niutitang Formation from Xiangxi area China. Marine and Petroleum Geology, 2020, 112(1):104057.
[26] FEDO C M, NESBITT H W, YOUNG G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 1995, 23(10):921-924.
[27] 马玉贞, 陶明信, 陈发源. 甘肃窑街寺湾沟-炭洞沟红层孢粉组合、地质时代与生态环境. 沉积学报, 1996, 14(1):93-102. MA Y Z, TAO M X, CHEN F Y. The red sporo-pollrn assemblages, geological age and ecological enviornment from SiwangouTandonggou of Yaojie, Gansu. Acta Sedimentologica Sinica, 1996, 14(1):93-102.
[28] 唐领余, 毛礼米, 吕新苗, 等. 第四纪沉积物中重要蕨类孢子和微体藻类的古生态环境指示意义. 科学通报, 2013, 58(20):1969-1983. TANG L Y, MAO L M, LYU X M, et al. Palaeoecological and palaeoenviormental significance of some important spores and micro-algae in Quaternary deposits. Chinese Science Bulletin. 2013, 58(20):1969-1983.
[29] 魏永峰, 赵志强, 林美英, 等. 西昆仑尖山混杂岩带中硅质岩地球化学特征及沉积环境. 新疆地质, 2016, 34(2):197-203. WEI Y F, ZHAO Z Q, LIN M Y, et al. Geochemical characteristics and sedimentary environment of cherts from Jianshan melange belt in West Kunlun. Xinjiang Geology, 2016, 34(2):197-203.
[30] 周洪瑞. 华北地台南部中新元古界层序地层研究. 北京:地质出版社, 1999. ZHOU H R. Study on stratigraphic characteristics of mesoproterozoic in southern North China Platform. Beijing:Geological Publishing House, 1999.
[31] 吴智平, 周瑶琪. 一种计算沉积速率的新方法:宇宙尘埃特征元素法. 沉积学报, 2000, 18(3):395-399. WU Z P, ZHOU Y Q. Using the characteristic elements from meteoritic must in strata to calculate sedimentation rate. Acta Sedimentologica Sinca, 2000, 18(3):395-399.
[32] 范萌萌, 卜军, 赵筱艳, 等. 鄂尔多斯盆地东南部延长组微量元素地球化学特征及环境指示意义. 西北大学学报(自然科学版), 2019, 49(4):633-642. FAN M M, BU J, ZHAO X Y, et al. Geochemical characteristics and environmental implications of trace elements of Yanchang Formation in southeastern Ordos Basin. Journal of Norhwest University(Natural Science Edition), 2019, 49(4):633-642.
[33] 王峰, 刘玄春, 邓秀芹, 等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义. 沉积学报, 2017, 35(6):1265-1273. WANG F, LIU X C, DENG X Q, et al. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin. Acta Sedimentologica Sinca, 2017, 35(6):1265-1273.
[34] 毛光周, 刘晓通, 安鹏瑞, 等. 无机地球化学指标在古盐度恢复中的应用及展望. 山东科技大学学报(自然科学版), 2018, 37(1):92-102. MAO G Z, LIU X T, AN P R, et al. Application and outlook of inorganic geochemical indexes in reconstruction of Palaeosalinity. Journal of Shandong University of Science and Technology(Natural Science), 2018, 37(1):92-102.
[35] 李成凤, 肖继风. 用微量元素研究胜利油田东营盆地沙河街组的古盐度. 沉积学报, 1988, 6(4):100-107. LI C F, XIAO J F. The application of trace element to the study on paleosalinities in Shahejie Formation of Dongying Basin Shengli Oilfield. Acta Sedimentologica Sinca, 1998, 6(4):100-107.
[36] PIPER D Z. Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks. Chemical Geology, 1994, 114(1/2):95-114.
[37] MURPHY A E, SAGEMAN B B, HOLLANDER D J, et al. Black shale deposition and faunal overturn in the Devonian Appalachian Basin:Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling. Paleoceanography, 2000, 15(3):280-291.
[38] TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies:An update. Chemical Geology, 2006, 232(1/2):12-32.
[39] 陈建平, 邓春萍, 宋孚庆, 等. 用生物标志物定量计算混合原油油源的数学模型. 地球化学, 2007, 4(2):205-214. CHEN J P, DENG C H, SONG F Q, et al. Mathenmatical calculating model using biomarkers to quantitatively determine relative source proportion of mixed oils.Geochimica, 2007, 4(2):205-214.
[40] 兰蕾, 李友川, 王柯, 等. 一组有效区分渤中凹陷烃源岩的生物标志化合物参数. 石油学报, 2019, 40(1):35-41.LAN L, LI Y C, WANG K, et al. Biomarker parameters for dffectively distinguishing source rocks in Bozhong Sag. Acta Petrolei Sinica, 2019, 40(1):35-41.
[41] EMERSON S R, HUESTED S S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Chemistry, 1991, 34(3/4):177-196.
[42] 李广之, 胡斌, 邓天龙, 等. 微量元素V和Ni的油气地质意义. 天然气地球科学, 2008, 19(1):13-17. LI G Z, HU B, DENG T L, et al. Petroleum geological significance of microelements V and Ni. Natural Gas Geoscience, 2008, 19(1):13-17.
[43] PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide. Beijing:Petroleum Industry Press, 2013.
[44] DEAN W E, GARDNER J V, PIPER D Z. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin. Geochimica et Cosmochimica Acta, 1997, 61(21):4507-4518.
[45] 刘传联, 徐金鲤. 生油古湖泊生产力的估算方法及应用实例. 沉积学报, 2002, 20(1):144-150. LIU C L, XU J L. Estimation method on productivity of oil-producing lake and a case study. Acta Sedimentologica Sinica, 2002, 20(1):144-150.
[46] PUJOL F, BERNER Z, STUBEN D. Palaeoenvironmental changes at the Frasnian/Famennian boundary in key European sections:Chemostratigraphic constraints. Palaeogeography Palaeoclimatology Palaeoecology, 2006, 240(1/2):120-145.
[47] 尹秀珍. 松辽盆地中部晚白垩世早期古湖泊生产力研究. 北京:中国地质大学(北京), 2008. YIN X Z. Palaeolacustrine peoductivity study of early Late Cretaceous in the central area of Songliao Basin. Beijing:China University of Geosciences(Beijing), 2008.
[48] ALGEO T J, KUWAHARA K, SANO H, et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography Palaeoclimatology Palaeoecology, 2011, 308(1/2):65-83.
[49] 刘顺喜. 海陆过渡相泥页岩储层特征及其沉积控制机理:以织纳煤田龙潭组为例. 徐州:中国矿业大学(徐州), 2018. LIU S X. Reservoir characteristics and sedimentary control mechanism of the marine-continental transitional mud shale:A case of the Longtan Formation in Zhina Coalfield. Xuzhou:China University of Mining and Technology(CUMT), 2018.
[50] MURRAY R W, LEINEN M, ISERN A R. Biogenic flux of Al to sediment in the central equatorial Pacific Ocean:Evidence for increased productivity during glacial periods. Paleoceanography, 1993, 8(5):651-670.
[51] DYMOND J, COLLIER R. Particulate barium fluxes and their relationships to biological productivity. Deep-Sea Res Ⅱ, 1996, 43(4/6):1283-1308.
[52] PAYTAN A, GRIFFITH E M. Marine barite:Recorder of variations in ocean export productivity. Deep-Sea Research Part Ⅱ, 2007, 54(5/7):687-705.
[53] DEMAISON G J, MOORE G T. Anoxic environments and oil source bed genesis. Organic Geochemistry, 1980, 2(1):9-31.
[54] DOUGLAS W, KIRKLAND, et al. Source-rock potential of evaporitic environment. AAPG Bulletin, 1981, 65(2):181-190.
[55] LATIMER J C, FILIPPELLI G M. Eocene to Miocene terrigenous inputs and export production:geochemical evidence from ODP Leg 177, Site 1090. Palaeogeography Palaeoclimatology Palaeoecology, 2002, 182(3/4):151-164.
[1] 马博, 吉利明, 张明震, 金培红, 苑伯超, 龙礼文. 酒西盆地红柳峡地区下白垩统烃源岩孢粉相与沉积古环境特征[J]. 岩性油气藏, 2021, 33(5): 22-33.
[2] 赵静, 黄志龙, 刘春锋, 李天军, 蒋一鸣, 谭思哲, 黄鋆, 郭小波. 西湖凹陷平北地区煤系烃源岩识别与分布[J]. 岩性油气藏, 2021, 33(5): 95-106.
[3] 陈亚军, 荆文波, 宋小勇, 何伯斌, 伍宏美, 王睿, 解士建, 宋凯辉, 马强. 三塘湖盆地马朗凹陷上石炭统沉积岩层地球化学特征及古环境意义[J]. 岩性油气藏, 2021, 33(4): 63-75.
[4] 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84.
[5] 叶涛, 王清斌, 代黎明, 陈容涛, 崔普媛. 台地相碳酸盐岩层序划分新方法——以渤中凹陷奥陶系为例[J]. 岩性油气藏, 2021, 33(3): 95-103.
[6] 孔红喜, 王远飞, 周飞, 朱军, 陈阳阳, 宋德康. 鄂博梁构造带油气成藏条件分析及勘探启示[J]. 岩性油气藏, 2021, 33(1): 175-185.
[7] 徐宇轩, 代宗仰, 胡晓东, 徐志明, 李丹. 川东北沙溪庙组天然气地球化学特征及地质意义——以五宝场地区为例[J]. 岩性油气藏, 2021, 33(1): 209-219.
[8] 姚军, 乐幸福, 陈娟, 苏旺, 张永峰. 基于拟三维多属性反演的优质烃源岩分布预测[J]. 岩性油气藏, 2021, 33(1): 248-257.
[9] 蒋中发, 丁修建, 王忠泉, 赵辛楣. 吉木萨尔凹陷二叠系芦草沟组烃源岩沉积古环境[J]. 岩性油气藏, 2020, 32(6): 109-119.
[10] 薛辉, 韩春元, 肖博雅, 王芳, 李玲. 蠡县斜坡高阳地区沙一下亚段浅水三角洲前缘沉积特征及模式[J]. 岩性油气藏, 2020, 32(4): 69-80.
[11] 黄彦杰, 白玉彬, 孙兵华, 黄礼, 黄昌武. 鄂尔多斯盆地富县地区延长组长7烃源岩特征及评价[J]. 岩性油气藏, 2020, 32(1): 66-75.
[12] 孙哲, 彭靖淞, 江尚昆, 叶涛, 郭颖. 渤海海域庙西中南洼围区烃源岩有机相与测井评价[J]. 岩性油气藏, 2020, 32(1): 102-110.
[13] 蒋德鑫, 姜正龙, 张贺, 杨舒越. 烃源岩总有机碳含量测井预测模型探讨——以陆丰凹陷文昌组为例[J]. 岩性油气藏, 2019, 31(6): 109-117.
[14] 马永平, 王国栋, 张献文, 潘树新, 黄林军, 陈永波, 郭娟娟. 粗粒沉积次生孔隙发育模式——以准噶尔盆地西北缘二叠系夏子街组为例[J]. 岩性油气藏, 2019, 31(5): 34-43.
[15] 杜晓峰, 王清斌, 庞小军, 代黎明, 张参. 渤中凹陷石南陡坡带东三段源汇体系定量表征[J]. 岩性油气藏, 2018, 30(5): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!