岩性油气藏 ›› 2019, Vol. 31 ›› Issue (6): 161–168.doi: 10.12108/yxyqc.20190618

• 石油工程 • 上一篇    

深层页岩裂缝形态影响因素

卞晓冰1,2, 侯磊1,2, 蒋廷学1,2, 高东伟3, 张驰3   

  1. 1. 页岩油气富集机理与有效开发国家重点实验室, 北京 100101;
    2. 中国石油化工股份有限公司石油工程技术研究院, 北京 100101;
    3. 中国石化重庆涪陵页岩气勘探开发有限公司, 重庆 408014
  • 收稿日期:2019-05-07 修回日期:2019-07-09 出版日期:2019-11-21 发布日期:2019-09-28
  • 第一作者:卞晓冰(1985-),男,博士,副研究员,主要从事水力压裂优化设计及数值模拟方面的研究工作。地址:(100101)北京市朝阳区北辰东路8号北辰时代大厦612。Email:xiaobingbian@126.com。
  • 基金资助:
    国家科技重大专项"彭水地区常压页岩气勘探开发示范工程"(编号:2016ZX05061)及中国石化科技攻关项目"深层页岩气多尺度裂缝压裂技术"(编号:P17014-6)联合资助

Influencing factors of fracture geometry in deep shale gas wells

BIAN Xiaobing1,2, HOU Lei1,2, JIANG Tingxue1,2, GAO Dongwei3, ZHANG Chi3   

  1. 1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100101, China;
    2. Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China;
    3. Chongqing Fuling Shale Gas Exploration and Development Company, Sinopec, Chongqing 408014, China
  • Received:2019-05-07 Revised:2019-07-09 Online:2019-11-21 Published:2019-09-28

摘要: 我国深层页岩气资源量丰富,但深井压裂施工压力高、加砂难度大、压后效果不理想,如何利用水力压裂措施形成有效的裂缝系统仍是亟待解决的难题。鉴于此,基于室内实验及微地震监测数据,应用Meyer软件离散裂缝网络模型模拟川东南某深层页岩气区块裂缝扩展规律(模拟精度可达85%以上)。通过正交设计及方差分析明确了压裂液黏度是影响深层页岩压裂裂缝形态中缝宽和SRV的主控因素,并将裂缝扩展分为前1/5~1/4时间段内的快速生成期和之后的缓慢增长期2个阶段。提出了目标区块深层页岩气井"大排量适度规模现场精细调控、变黏度混合压裂液充分造缝、小粒径低砂比连续加砂有效支撑"的技术思路,确定了单井液量、砂量、排量等最优参数范围。指导了一口3 900 m深水平井的压裂施工,综合砂液比为3.51%,单段最高砂量为80.6 m3,压后获得了11.4万m3的测试产量。该研究为类似深层页岩气井压裂设计提供了依据。

关键词: 深层页岩, 数值模拟, 裂缝形态, SRV, 主控因素

Abstract: There are abundant deep shale gas resources in China. For deep shale gas wells,the casing pressure is usually very high and it is difficult to pump proppants during hydraulic fracturing treatment,however,the production is low as well. How to generate effective fracture system remains an urgent and unresolved issue in deep shale gas wells. Thus,based on lab experiments together with microseismic monitoring data,a fracture propagation model was established using discrete fracture network model of Meyer,especially for deep shale gas wells in southeast Sichuan Basin,and the simulation accuracy is above 85%. Through orthogonal design and variance analysis,it is defined that fracturing fluid viscosity is the main controlling factor affecting fracture geometry especially for fracture width and SRV in deep shale gas wells,and there are two stages for the fracture propagation progress:the rapid growth stage in the early 1/5-1/4 pump time,and the following moderate growth stage. The fracturing design principle was put forward for the target block:fine field control with larger fluid displacement and moderate operation scale,hybrid hydraulic fluid with various viscosity to achieve fully fracture propagation, and continuous smaller proppant loading mode with lower concentration to prop fracture effectively. The fracturing parameters were optimized such as fracturing fluid volume,proppant volume and fluid displacement. A sample horizontal well buried more than 3 900 m was fractured with comprehensive sand-liquid ratio up to 3.51% and maximum sand volume per stage up to 80.6 m3,and the testing production was 11.4×104m3. The research could provide fracturing references for similar horizontal wells in deep shale gas play.

Key words: deep shale, numerical simulation, fracture geometry, SRV, main controlling factors

中图分类号: 

  • TE357.1
[1] 贾承造,郑民,张永峰. 中国非常规油气资源与勘探开发前景.石油勘探与开发,2012,39(2):129-136. JIA C Z,ZHENG M,ZHANG Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Petroleum Exploration and Development,2012,39(2):129-136.
[2] 邹才能,翟光明,张光亚,等.全球常规-非常规油气形成分布、资源潜力及趋势预测.石油勘探与开发,2015,42(1):13-25. ZOU C N,ZHAI G M,ZHANG G Y,et al. Formation,distribution,potential and prediction of global conventional and unconventional hydrocarbon resources. Petroleum Exploration and Development,2015,42(1):13-25.
[3] 邹才能,赵群,董大忠,等.页岩气基本特征、主要挑战与未来前景.天然气地球科学,2017,28(12):1781-1796. ZOU C N,ZHAO Q,DONG D Z,et al. Geological characteristics, mail challenges and future prospect of shale gas. Natural Gas Geoscience,2017,28(12):1781-1796.
[4] 蒋廷学,卞晓冰,王海涛,等.深层页岩气水平井体积压裂技术.天然气工业,2017,37(1):90-96. JIANG T X,BIAN X B,WANG H T,et al. Volume fracturing of deep shale gas horizontal wells. Natural Gas Industry,2017, 37(1):90-96.
[5] 冯国强,赵立强,卞晓冰,等.深层页岩气水平井多尺度裂缝压裂技术.石油钻探技术,2017,45(6):77-82. FENG G Q,ZHAO L Q,BIAN X B,et al. Multi-scale hydraulic fracturing of horizontal wells in deep shale gas plays. Petroleum Drilling Techniques,2017,45(6):77-82.
[6] FAN L,THOMPSON J W,ROBINSON J R. Understanding gas production mechanism and effectiveness of well stimulation in the Haynesville shale through reservoir simulation. CSUG/SPE 136696,2010.
[7] GULEN G,IKONNIKOVA S,BROWNING J,et al. Fayetteville shale-production outlook. SPE Economics & Management,2014:1-13.
[8] 蒋廷学,王海涛,卞晓冰,等. 水平井体积压裂技术研究与应用.岩性油气藏,2018,30(2):1-11. JIANG T X,WANG H T,BIAN X B,et al. Volume fracturing technology for horizontal well and its application. Lithologic Reservoirs,2018,30(2):1-11.
[9] 曾义金,陈作,卞晓冰.川东南深层页岩气分段压裂技术的突破与认识.天然气工业,2016,36(1):61-67. ZENG Y J,CHEN Z,BIAN X B,et al. Breakthrough in staged fracturing technology for deep shale gas reservoirs in SE Sichuan Basin and its implications. Natural Gas Industry,2016,36(1):61-67.
[10] 杜洋,雷炜,李莉,等. 页岩气井压裂后焖排模式. 岩性油气藏,2019,31(3):145-151. DU Y,LEI W,LI L,et al. Shut-in and flow-back pattern of fractured shale gas wells. Lithologic Reservoirs,2019,31(3):145151.
[11] 陈作,曾义金.深层页岩气分段压裂技术现状及发展建议.石油钻探技术,2016,44(1):6-11. CHEN Z,ZENG Y J. Present situations and prospects of multistage fracturing technology for deep shale gas development. Petroleum Drilling Techniques,2016,44(1):6-11.
[12] 张驰. 涪陵页岩气田平桥区块深层气井压裂工艺优化与应用.岩性油气藏,2018,30(6):160-168. ZHANG C. Optimization and application of deep gas well fracturing in Pingqiao block of Fuling shale gas field. Lithologic Reservoirs,2018,30(6):160-168.
[13] MSALLI A,JENNIFER M. Slickwater proppant transport in hydraulic fractures:New experimental findings & scalable correlation. SPE 174828,2015.
[1] 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[2] 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24.
[3] 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188.
[4] 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22.
[5] 李丰丰, 倪小威, 徐思慧, 魏新路, 刘迪仁. 斜井各向异性地层随钻侧向测井响应规律及快速校正方法[J]. 岩性油气藏, 2023, 35(3): 161-168.
[6] 吕栋梁, 杨健, 林立明, 张恺漓, 陈燕虎. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏, 2023, 35(1): 145-159.
[7] 闫建平, 罗静超, 石学文, 钟光海, 郑马嘉, 黄毅, 唐洪明, 胡钦红. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 2022, 34(6): 60-71.
[8] 罗群, 张泽元, 袁珍珠, 许倩, 秦伟. 致密油甜点的内涵、评价与优选——以酒泉盆地青西凹陷白垩系下沟组为例[J]. 岩性油气藏, 2022, 34(4): 1-12.
[9] 邱晨, 闫建平, 钟光海, 李志鹏, 范存辉, 张悦, 胡钦红, 黄毅. 四川盆地泸州地区奥陶系五峰组—志留系龙马溪组页岩沉积微相划分及测井识别[J]. 岩性油气藏, 2022, 34(3): 117-130.
[10] 张威, 李磊, 邱欣卫, 龚广传, 程琳燕, 高毅凡, 杨志鹏, 杨蕾. A/S对断陷湖盆三角洲时空演化的控制及数值模拟——以珠江口盆地陆丰22洼古近系文昌组为例[J]. 岩性油气藏, 2022, 34(3): 131-141.
[11] 张梦琳, 李郭琴, 何嘉, 衡德. 川西南缘天宫堂构造奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2022, 34(2): 141-151.
[12] 董敏, 郭伟, 张林炎, 吴中海, 马立成, 董会, 冯兴强, 杨跃辉. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51.
[13] 邵晓州, 王苗苗, 齐亚林, 贺彤彤, 张晓磊, 庞锦莲, 郭懿萱. 鄂尔多斯盆地平凉北地区长8油藏特征及成藏主控因素[J]. 岩性油气藏, 2021, 33(6): 59-69.
[14] 张皓宇, 李茂, 康永梅, 吴泽民, 王广. 鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征[J]. 岩性油气藏, 2021, 33(6): 177-188.
[15] 张治恒, 田继军, 韩长城, 张文文, 邓守伟, 孙国祥. 吉木萨尔凹陷芦草沟组储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 116-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .