岩性油气藏 ›› 2019, Vol. 31 ›› Issue (6): 161–168.doi: 10.12108/yxyqc.20190618

• 石油工程 • 上一篇    

深层页岩裂缝形态影响因素

卞晓冰1,2, 侯磊1,2, 蒋廷学1,2, 高东伟3, 张驰3   

  1. 1. 页岩油气富集机理与有效开发国家重点实验室, 北京 100101;
    2. 中国石油化工股份有限公司石油工程技术研究院, 北京 100101;
    3. 中国石化重庆涪陵页岩气勘探开发有限公司, 重庆 408014
  • 收稿日期:2019-05-07 修回日期:2019-07-09 出版日期:2019-11-21 发布日期:2019-09-28
  • 作者简介:卞晓冰(1985-),男,博士,副研究员,主要从事水力压裂优化设计及数值模拟方面的研究工作。地址:(100101)北京市朝阳区北辰东路8号北辰时代大厦612。Email:xiaobingbian@126.com。
  • 基金资助:
    国家科技重大专项"彭水地区常压页岩气勘探开发示范工程"(编号:2016ZX05061)及中国石化科技攻关项目"深层页岩气多尺度裂缝压裂技术"(编号:P17014-6)联合资助

Influencing factors of fracture geometry in deep shale gas wells

BIAN Xiaobing1,2, HOU Lei1,2, JIANG Tingxue1,2, GAO Dongwei3, ZHANG Chi3   

  1. 1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100101, China;
    2. Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China;
    3. Chongqing Fuling Shale Gas Exploration and Development Company, Sinopec, Chongqing 408014, China
  • Received:2019-05-07 Revised:2019-07-09 Online:2019-11-21 Published:2019-09-28

摘要: 我国深层页岩气资源量丰富,但深井压裂施工压力高、加砂难度大、压后效果不理想,如何利用水力压裂措施形成有效的裂缝系统仍是亟待解决的难题。鉴于此,基于室内实验及微地震监测数据,应用Meyer软件离散裂缝网络模型模拟川东南某深层页岩气区块裂缝扩展规律(模拟精度可达85%以上)。通过正交设计及方差分析明确了压裂液黏度是影响深层页岩压裂裂缝形态中缝宽和SRV的主控因素,并将裂缝扩展分为前1/5~1/4时间段内的快速生成期和之后的缓慢增长期2个阶段。提出了目标区块深层页岩气井"大排量适度规模现场精细调控、变黏度混合压裂液充分造缝、小粒径低砂比连续加砂有效支撑"的技术思路,确定了单井液量、砂量、排量等最优参数范围。指导了一口3 900 m深水平井的压裂施工,综合砂液比为3.51%,单段最高砂量为80.6 m3,压后获得了11.4万m3的测试产量。该研究为类似深层页岩气井压裂设计提供了依据。

关键词: 深层页岩, 数值模拟, 裂缝形态, SRV, 主控因素

Abstract: There are abundant deep shale gas resources in China. For deep shale gas wells,the casing pressure is usually very high and it is difficult to pump proppants during hydraulic fracturing treatment,however,the production is low as well. How to generate effective fracture system remains an urgent and unresolved issue in deep shale gas wells. Thus,based on lab experiments together with microseismic monitoring data,a fracture propagation model was established using discrete fracture network model of Meyer,especially for deep shale gas wells in southeast Sichuan Basin,and the simulation accuracy is above 85%. Through orthogonal design and variance analysis,it is defined that fracturing fluid viscosity is the main controlling factor affecting fracture geometry especially for fracture width and SRV in deep shale gas wells,and there are two stages for the fracture propagation progress:the rapid growth stage in the early 1/5-1/4 pump time,and the following moderate growth stage. The fracturing design principle was put forward for the target block:fine field control with larger fluid displacement and moderate operation scale,hybrid hydraulic fluid with various viscosity to achieve fully fracture propagation, and continuous smaller proppant loading mode with lower concentration to prop fracture effectively. The fracturing parameters were optimized such as fracturing fluid volume,proppant volume and fluid displacement. A sample horizontal well buried more than 3 900 m was fractured with comprehensive sand-liquid ratio up to 3.51% and maximum sand volume per stage up to 80.6 m3,and the testing production was 11.4×104m3. The research could provide fracturing references for similar horizontal wells in deep shale gas play.

Key words: deep shale, numerical simulation, fracture geometry, SRV, main controlling factors

中图分类号: 

  • TE357.1
[1] 贾承造,郑民,张永峰. 中国非常规油气资源与勘探开发前景.石油勘探与开发,2012,39(2):129-136. JIA C Z,ZHENG M,ZHANG Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Petroleum Exploration and Development,2012,39(2):129-136.
[2] 邹才能,翟光明,张光亚,等.全球常规-非常规油气形成分布、资源潜力及趋势预测.石油勘探与开发,2015,42(1):13-25. ZOU C N,ZHAI G M,ZHANG G Y,et al. Formation,distribution,potential and prediction of global conventional and unconventional hydrocarbon resources. Petroleum Exploration and Development,2015,42(1):13-25.
[3] 邹才能,赵群,董大忠,等.页岩气基本特征、主要挑战与未来前景.天然气地球科学,2017,28(12):1781-1796. ZOU C N,ZHAO Q,DONG D Z,et al. Geological characteristics, mail challenges and future prospect of shale gas. Natural Gas Geoscience,2017,28(12):1781-1796.
[4] 蒋廷学,卞晓冰,王海涛,等.深层页岩气水平井体积压裂技术.天然气工业,2017,37(1):90-96. JIANG T X,BIAN X B,WANG H T,et al. Volume fracturing of deep shale gas horizontal wells. Natural Gas Industry,2017, 37(1):90-96.
[5] 冯国强,赵立强,卞晓冰,等.深层页岩气水平井多尺度裂缝压裂技术.石油钻探技术,2017,45(6):77-82. FENG G Q,ZHAO L Q,BIAN X B,et al. Multi-scale hydraulic fracturing of horizontal wells in deep shale gas plays. Petroleum Drilling Techniques,2017,45(6):77-82.
[6] FAN L,THOMPSON J W,ROBINSON J R. Understanding gas production mechanism and effectiveness of well stimulation in the Haynesville shale through reservoir simulation. CSUG/SPE 136696,2010.
[7] GULEN G,IKONNIKOVA S,BROWNING J,et al. Fayetteville shale-production outlook. SPE Economics & Management,2014:1-13.
[8] 蒋廷学,王海涛,卞晓冰,等. 水平井体积压裂技术研究与应用.岩性油气藏,2018,30(2):1-11. JIANG T X,WANG H T,BIAN X B,et al. Volume fracturing technology for horizontal well and its application. Lithologic Reservoirs,2018,30(2):1-11.
[9] 曾义金,陈作,卞晓冰.川东南深层页岩气分段压裂技术的突破与认识.天然气工业,2016,36(1):61-67. ZENG Y J,CHEN Z,BIAN X B,et al. Breakthrough in staged fracturing technology for deep shale gas reservoirs in SE Sichuan Basin and its implications. Natural Gas Industry,2016,36(1):61-67.
[10] 杜洋,雷炜,李莉,等. 页岩气井压裂后焖排模式. 岩性油气藏,2019,31(3):145-151. DU Y,LEI W,LI L,et al. Shut-in and flow-back pattern of fractured shale gas wells. Lithologic Reservoirs,2019,31(3):145151.
[11] 陈作,曾义金.深层页岩气分段压裂技术现状及发展建议.石油钻探技术,2016,44(1):6-11. CHEN Z,ZENG Y J. Present situations and prospects of multistage fracturing technology for deep shale gas development. Petroleum Drilling Techniques,2016,44(1):6-11.
[12] 张驰. 涪陵页岩气田平桥区块深层气井压裂工艺优化与应用.岩性油气藏,2018,30(6):160-168. ZHANG C. Optimization and application of deep gas well fracturing in Pingqiao block of Fuling shale gas field. Lithologic Reservoirs,2018,30(6):160-168.
[13] MSALLI A,JENNIFER M. Slickwater proppant transport in hydraulic fractures:New experimental findings & scalable correlation. SPE 174828,2015.
[1] 张治恒, 田继军, 韩长城, 张文文, 邓守伟, 孙国祥. 吉木萨尔凹陷芦草沟组储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 116-126.
[2] 朱苏阳, 李冬梅, 李传亮, 李会会, 刘雄志. 再谈岩石本体变形的孔隙度不变原则[J]. 岩性油气藏, 2021, 33(2): 180-188.
[3] 高计县, 孙文举, 吴鹏, 段长江. 鄂尔多斯盆地东北缘神府区块上古生界致密砂岩成藏特征[J]. 岩性油气藏, 2021, 33(1): 121-130.
[4] 刘明明, 王全, 马收, 田中政, 丛颜. 基于混合粒子群算法的煤层气井位优化方法[J]. 岩性油气藏, 2020, 32(6): 164-171.
[5] 关华, 郭平, 赵春兰, 谭保国, 徐冬梅. 渤海湾盆地永安油田永66区块氮气驱油机理[J]. 岩性油气藏, 2020, 32(2): 149-160.
[6] 周瑞, 苏玉亮, 马兵, 张琪, 王文东. 随机分形体积压裂水平井CO2吞吐模拟[J]. 岩性油气藏, 2020, 32(1): 161-168.
[7] 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154.
[8] 苏朋辉, 夏朝辉, 刘玲莉, 段利江, 王建俊, 肖文杰. 澳大利亚M区块低煤阶煤层气井产能主控因素及合理开发方式[J]. 岩性油气藏, 2019, 31(5): 121-128.
[9] 姜瑞忠, 张福蕾, 崔永正, 潘红, 张旭, 张春光, 沈泽阳. 考虑应力敏感和复杂运移的页岩气藏压力动态分析[J]. 岩性油气藏, 2019, 31(4): 149-156.
[10] 王华超, 韩登林, 欧阳传湘, 周嘉义, 王倩倩, 马力. 库车坳陷北部阿合组致密砂岩储层特征及主控因素[J]. 岩性油气藏, 2019, 31(2): 115-123.
[11] 李继庆, 刘曰武, 黄灿, 高大鹏. 页岩气水平井试井模型及井间干扰特征[J]. 岩性油气藏, 2018, 30(6): 138-144.
[12] 张驰. 涪陵页岩气田平桥区块深层气井压裂工艺优化与应用[J]. 岩性油气藏, 2018, 30(6): 160-168.
[13] 陶帅, 郝永卯, 周杰, 曹小朋, 黎晓舟. 透镜体低渗透岩性油藏合理井网井距研究[J]. 岩性油气藏, 2018, 30(5): 116-123.
[14] 仲米虹, 唐武. 前陆盆地隆后坳陷区湖底扇沉积特征及主控因素——以塔北轮南地区三叠系为例[J]. 岩性油气藏, 2018, 30(5): 18-28.
[15] 苏皓, 雷征东, 张荻萩, 李俊超, 鞠斌山, 张泽人. 致密油藏体积压裂水平井参数优化研究[J]. 岩性油气藏, 2018, 30(4): 140-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .