岩性油气藏 ›› 2017, Vol. 29 ›› Issue (4): 154–161.doi: 10.3969/j.issn.1673-8926.2017.04.019

• 油气田开发 • 上一篇    下一篇

致密气藏气水两相压裂水平井产能计算方法

何吉祥1, 姜瑞忠1, 毛瑜2, 袁淋3   

  1. 1. 中国石油大学 (华东)石油工程学院, 山东 青岛 266580;
    2. 中国石油华北油田分公司 勘探开发研究院, 河北 任丘 062552;
    3. 中国石化西南油气分公司 川东北采气厂, 四川 阆中 637042
  • 收稿日期:2017-01-23 修回日期:2017-03-15 出版日期:2017-07-21 发布日期:2017-07-21
  • 作者简介:何吉祥(1986-),男,中国石油大学(华东)在读博士研究生,研究方向为气井试井、不稳态产量递减分析方法研究。地址:(266580)山东省青岛市黄岛区长江西路66号中国石油大学(华东)石油工程学院。Email:372366931@qq.com。
  • 基金资助:
    国家自然科学基金项目“页岩气藏多级压裂水平井流动特征及产能评价方法研究”(编号:51374227)资助

Productivity calculation method for gas-water two phase fractured horizontal wells in tight gas reservoir

HE Jixiang1, JIANG Ruizhong1, MAO Yu2, YUAN Lin3   

  1. 1. School of Petroleum Engineering, China University of Petroleum, Qingdao 266580, Shandong, China;
    2. Research Institute of Exploration and Development, PetroChina Huabei Oilfield Company, Renqiu 062552, Hebei, China;
    3. Northeastern Sichuan Gas Production Plant, Sinopec Southwest Oil and Gas Company, Langzhong 637402, Sichuan, China
  • Received:2017-01-23 Revised:2017-03-15 Online:2017-07-21 Published:2017-07-21

摘要: 致密气是目前较具潜力的非常规天然气资源之一,但受其储层低孔、低渗特征,气井产水以及气井调产的影响,以常规不稳定渗流理论以及传统达西渗流规律预测气井产量不再适用。基于致密气藏压裂水平井渗流特点,引入气水同产、储层与裂缝应力敏感效应、储层气体滑脱效应以及裂缝气体紊流效应,分别定义储层与裂缝中气水两相拟压力,建立了致密气藏气水两相稳态产能计算新方法。实例计算与产能影响因素分析表明:利用本文方法计算的无阻流量与产能测试无阻流量误差较小,证明了该方法具有较高的准确性;随着裂缝条数、裂缝半长的增大以及裂缝导流能力的增强,气井无阻流量增大;随着生产水气体积比、储层与裂缝应力敏感指数的增大,气井无阻流量减小;滑脱效应对气井产能影响较小,可忽略不计。该方法为致密气藏压裂水平井流入动态研究以及裂缝参数优化设计提供了理论依据。

关键词: 烃源岩, 油-源对比, 延长组, 旬邑探区, 鄂尔多斯盆地

Abstract: Tight gas is a potential of unconventional natural gas resources,while duo to the low porosity, low permeability, producing water and production adjusting, unsteady flow model and conventional Darcy law are no longer applicable to predict the production of gas wells. Based on the percolation mechanism of fractured horizontal wells in tight gas reservoir, considered the effects of stress sensitivity in reservoir and fractures, gas slippage and non-Darcy percolation caused by high velocity in fractures on productivity, the gas-water two phase generalized pseudo pressure in reservoir and fractures was defined respectively, and the gas-water two phase productivity calculation model for tight gas reservoir was built. Case study shows that the relative error of absolute open flow calculated by the new model is small compared with that calculated by productivity testing, which proves high accuracy and reliability of the new model. With the increase of fracture number, half-length and conductivity, the absolute open flow of gas well increases, while with the increase of water-gas volume ratio and stress sensitivity index in reservoir and fractures, the absolute open flow of gas well decreases, meanwhile gas slippage has little influence on gas well productivity,which can be neglected. The method could provide a theoretical basis for studying inflow performance relationship(IPR)of fractured horizontal wells and optimizing the fracture parameters in tight gas reservoir.

Key words: hydrocarbon source rock, oil source correlation, Yanchang Formation, Xunyi exploration area, Ordos Basin

中图分类号: 

  • TE34
[1] 邱中建, 邓松涛. 中国非常规天然气的战略地位. 天然气工业, 2012, 32(1):1-5. QIU Z J, DENG S T. Strategic position of unconventional natural gas in China. Natural Gas Industry, 2012, 32(1):1-5.
[2] 李书恒, 方国庆, 杨金龙, 等.鄂尔多斯盆地超低渗透储层成因研究及意义.岩性油气藏, 2012, 24(6):32-37. LI S H, FANG G Q, YANG J L, et al. Origin of ultra-low permeability reservoirs in Ordos Basin and its significance. Lithologic Reservoirs, 2012, 24(6):32-37.
[3] 王拓, 朱如凯, 白斌, 等. 非常规油气勘探、评价和开发新方法.岩性油气藏, 2013, 25(6):35-39. WANG T, ZHU R K, BAI B, et al. New methods for the exploration, evaluation and development of unconventional reservoirs. Lithologic Reservoirs, 2013, 25(6):35-39.
[4] 高树生, 叶礼友, 熊伟, 等.大型低渗致密含水气藏渗流机理及开发对策.石油天然气学报(江汉石油学院学报), 2013, 35(7):93-99. GAO S S, YE L Y, XIONG W, et al. Seepage mechanism and strategy for development of large and low permeability and tight sandstone gas reservoirs with water content. Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute), 2013, 35(7):93-99.
[5] 杨朝蓬, 沙雁红, 刘尚奇, 等.苏里格致密砂岩气藏单相气体渗流特征.科技导报, 2014, 32(28/29):54-58. YANG Z P, SHA Y H, LIU S Q, et al. Flow behavior of singlephase gas in Sulige tight sandstone gas reservoir. Science & Technology Review, 2014, 32(28/29):54-58.
[6] GUO G, EVANS R D. Inflow performance of a horizontal well intersecting natural fractures. SPE 25501, 1993.
[7] 郎兆新, 张丽华, 程林松. 压裂水平井产能研究. 石油大学学报, 1994, 18(2):43-46. LANG Z X, ZHANG L H, CHENG L S. Investigation on productivity of fractured horizontal well. Journal of the University of Petroleum, 1994, 18(2):43-46.
[8] 宁正福, 韩树刚, 程林松, 等.低渗透油气藏压裂水平井产能计算方法.石油学报, 2002, 23(2):68-71. NING Z F, HAN S G, CHENG L S, et al. Productivity calculation method of fractured horizontal wells in low permeability oil or gas field. Acta Petrolei Sinica, 2002, 23(2):68-71.
[9] ZHU D, MAGALHAES F, VALKO P P. Predicting productivity of multiple-fractured horizontal gas wells. SPE 106280, 2007.
[10] 曾凡辉, 程小昭, 郭建春.裂缝面非均匀流入的低渗透油藏压裂水平井非稳态产量计算. 中南大学学报(自然科学版), 2016, 47(4):1353-1358. ZENG F H, CHENG X Z, GUO J C. Calculation of unsteady productivity of fractured horizontal wells. Journal of Central South University(Science and Technology), 2016, 47(4):1353-1358.
[11] 郑松青. 非均匀分段压裂水平井产能计算. 东北石油大学学报, 2013, 37(4):55-59. ZHENG S Q. Productivity calculation of non-uniform multifractured horizontal wells. Journal of Northeast Petroleum University, 2013, 37(4):55-59.
[12] 陈元千. 确定天然气物性的相关经验公式. 新疆石油地质, 1989, 10(2):48-55. CHEN Y Q. Empirical formulas to determine the petrophysical property of natural gas. Xinjiang Petroleum Geology, 1989, 10(2):48-55.
[13] 于忠良, 熊伟, 高树生, 等.致密储层应力敏感性及其对油田开发的影响. 石油学报, 2007, 28(4):95-98. YU Z L, XIONG W, GAO S S, et al. Stress sensitivity of tight reservoir and its influence on oilfield development. Acta Petrolei Sinica, 2007, 28(4):95-98.
[1] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[2] 李志远, 杨仁超, 张吉, 王一, 杨特波, 董亮. 天然气扩散散失率定量评价——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2021, 33(4): 76-84.
[3] 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84.
[4] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[5] 姚海鹏, 于东方, 李玲, 林海涛. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
[6] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[7] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[8] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[9] 薛培, 张丽霞, 梁全胜, 师毅. 基于逸度与压力计算页岩吸附甲烷的等量吸附热差异分析——以延长探区延长组页岩为例[J]. 岩性油气藏, 2021, 33(2): 171-179.
[10] 周新平, 邓秀芹, 李士祥, 左静, 张文选, 李涛涛, 廖永乐. 鄂尔多斯盆地延长组下组合地层水特征及其油气地质意义[J]. 岩性油气藏, 2021, 33(1): 109-120.
[11] 高计县, 孙文举, 吴鹏, 段长江. 鄂尔多斯盆地东北缘神府区块上古生界致密砂岩成藏特征[J]. 岩性油气藏, 2021, 33(1): 121-130.
[12] 孔红喜, 王远飞, 周飞, 朱军, 陈阳阳, 宋德康. 鄂博梁构造带油气成藏条件分析及勘探启示[J]. 岩性油气藏, 2021, 33(1): 175-185.
[13] 徐宇轩, 代宗仰, 胡晓东, 徐志明, 李丹. 川东北沙溪庙组天然气地球化学特征及地质意义——以五宝场地区为例[J]. 岩性油气藏, 2021, 33(1): 209-219.
[14] 姚军, 乐幸福, 陈娟, 苏旺, 张永峰. 基于拟三维多属性反演的优质烃源岩分布预测[J]. 岩性油气藏, 2021, 33(1): 248-257.
[15] 曹江骏, 陈朝兵, 罗静兰, 王茜. 自生黏土矿物对深水致密砂岩储层微观非均质性的影响——以鄂尔多斯盆地西南部合水地区长6油层组为例[J]. 岩性油气藏, 2020, 32(6): 36-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .