岩性油气藏 ›› 2017, Vol. 29 ›› Issue (4): 154–161.doi: 10.3969/j.issn.1673-8926.2017.04.019

• 油气田开发 • 上一篇    下一篇

致密气藏气水两相压裂水平井产能计算方法

何吉祥1, 姜瑞忠1, 毛瑜2, 袁淋3   

  1. 1. 中国石油大学 (华东)石油工程学院, 山东 青岛 266580;
    2. 中国石油华北油田分公司 勘探开发研究院, 河北 任丘 062552;
    3. 中国石化西南油气分公司 川东北采气厂, 四川 阆中 637042
  • 收稿日期:2017-01-23 修回日期:2017-03-15 出版日期:2017-07-21 发布日期:2017-07-21
  • 第一作者:何吉祥(1986-),男,中国石油大学(华东)在读博士研究生,研究方向为气井试井、不稳态产量递减分析方法研究。地址:(266580)山东省青岛市黄岛区长江西路66号中国石油大学(华东)石油工程学院。Email:372366931@qq.com。
  • 基金资助:
    国家自然科学基金项目“页岩气藏多级压裂水平井流动特征及产能评价方法研究”(编号:51374227)资助

Productivity calculation method for gas-water two phase fractured horizontal wells in tight gas reservoir

HE Jixiang1, JIANG Ruizhong1, MAO Yu2, YUAN Lin3   

  1. 1. School of Petroleum Engineering, China University of Petroleum, Qingdao 266580, Shandong, China;
    2. Research Institute of Exploration and Development, PetroChina Huabei Oilfield Company, Renqiu 062552, Hebei, China;
    3. Northeastern Sichuan Gas Production Plant, Sinopec Southwest Oil and Gas Company, Langzhong 637402, Sichuan, China
  • Received:2017-01-23 Revised:2017-03-15 Online:2017-07-21 Published:2017-07-21

摘要: 致密气是目前较具潜力的非常规天然气资源之一,但受其储层低孔、低渗特征,气井产水以及气井调产的影响,以常规不稳定渗流理论以及传统达西渗流规律预测气井产量不再适用。基于致密气藏压裂水平井渗流特点,引入气水同产、储层与裂缝应力敏感效应、储层气体滑脱效应以及裂缝气体紊流效应,分别定义储层与裂缝中气水两相拟压力,建立了致密气藏气水两相稳态产能计算新方法。实例计算与产能影响因素分析表明:利用本文方法计算的无阻流量与产能测试无阻流量误差较小,证明了该方法具有较高的准确性;随着裂缝条数、裂缝半长的增大以及裂缝导流能力的增强,气井无阻流量增大;随着生产水气体积比、储层与裂缝应力敏感指数的增大,气井无阻流量减小;滑脱效应对气井产能影响较小,可忽略不计。该方法为致密气藏压裂水平井流入动态研究以及裂缝参数优化设计提供了理论依据。

关键词: 烃源岩, 油-源对比, 延长组, 旬邑探区, 鄂尔多斯盆地

Abstract: Tight gas is a potential of unconventional natural gas resources,while duo to the low porosity, low permeability, producing water and production adjusting, unsteady flow model and conventional Darcy law are no longer applicable to predict the production of gas wells. Based on the percolation mechanism of fractured horizontal wells in tight gas reservoir, considered the effects of stress sensitivity in reservoir and fractures, gas slippage and non-Darcy percolation caused by high velocity in fractures on productivity, the gas-water two phase generalized pseudo pressure in reservoir and fractures was defined respectively, and the gas-water two phase productivity calculation model for tight gas reservoir was built. Case study shows that the relative error of absolute open flow calculated by the new model is small compared with that calculated by productivity testing, which proves high accuracy and reliability of the new model. With the increase of fracture number, half-length and conductivity, the absolute open flow of gas well increases, while with the increase of water-gas volume ratio and stress sensitivity index in reservoir and fractures, the absolute open flow of gas well decreases, meanwhile gas slippage has little influence on gas well productivity,which can be neglected. The method could provide a theoretical basis for studying inflow performance relationship(IPR)of fractured horizontal wells and optimizing the fracture parameters in tight gas reservoir.

Key words: hydrocarbon source rock, oil source correlation, Yanchang Formation, Xunyi exploration area, Ordos Basin

中图分类号: 

  • TE34
[1] 邱中建, 邓松涛. 中国非常规天然气的战略地位. 天然气工业, 2012, 32(1):1-5. QIU Z J, DENG S T. Strategic position of unconventional natural gas in China. Natural Gas Industry, 2012, 32(1):1-5.
[2] 李书恒, 方国庆, 杨金龙, 等.鄂尔多斯盆地超低渗透储层成因研究及意义.岩性油气藏, 2012, 24(6):32-37. LI S H, FANG G Q, YANG J L, et al. Origin of ultra-low permeability reservoirs in Ordos Basin and its significance. Lithologic Reservoirs, 2012, 24(6):32-37.
[3] 王拓, 朱如凯, 白斌, 等. 非常规油气勘探、评价和开发新方法.岩性油气藏, 2013, 25(6):35-39. WANG T, ZHU R K, BAI B, et al. New methods for the exploration, evaluation and development of unconventional reservoirs. Lithologic Reservoirs, 2013, 25(6):35-39.
[4] 高树生, 叶礼友, 熊伟, 等.大型低渗致密含水气藏渗流机理及开发对策.石油天然气学报(江汉石油学院学报), 2013, 35(7):93-99. GAO S S, YE L Y, XIONG W, et al. Seepage mechanism and strategy for development of large and low permeability and tight sandstone gas reservoirs with water content. Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute), 2013, 35(7):93-99.
[5] 杨朝蓬, 沙雁红, 刘尚奇, 等.苏里格致密砂岩气藏单相气体渗流特征.科技导报, 2014, 32(28/29):54-58. YANG Z P, SHA Y H, LIU S Q, et al. Flow behavior of singlephase gas in Sulige tight sandstone gas reservoir. Science & Technology Review, 2014, 32(28/29):54-58.
[6] GUO G, EVANS R D. Inflow performance of a horizontal well intersecting natural fractures. SPE 25501, 1993.
[7] 郎兆新, 张丽华, 程林松. 压裂水平井产能研究. 石油大学学报, 1994, 18(2):43-46. LANG Z X, ZHANG L H, CHENG L S. Investigation on productivity of fractured horizontal well. Journal of the University of Petroleum, 1994, 18(2):43-46.
[8] 宁正福, 韩树刚, 程林松, 等.低渗透油气藏压裂水平井产能计算方法.石油学报, 2002, 23(2):68-71. NING Z F, HAN S G, CHENG L S, et al. Productivity calculation method of fractured horizontal wells in low permeability oil or gas field. Acta Petrolei Sinica, 2002, 23(2):68-71.
[9] ZHU D, MAGALHAES F, VALKO P P. Predicting productivity of multiple-fractured horizontal gas wells. SPE 106280, 2007.
[10] 曾凡辉, 程小昭, 郭建春.裂缝面非均匀流入的低渗透油藏压裂水平井非稳态产量计算. 中南大学学报(自然科学版), 2016, 47(4):1353-1358. ZENG F H, CHENG X Z, GUO J C. Calculation of unsteady productivity of fractured horizontal wells. Journal of Central South University(Science and Technology), 2016, 47(4):1353-1358.
[11] 郑松青. 非均匀分段压裂水平井产能计算. 东北石油大学学报, 2013, 37(4):55-59. ZHENG S Q. Productivity calculation of non-uniform multifractured horizontal wells. Journal of Northeast Petroleum University, 2013, 37(4):55-59.
[12] 陈元千. 确定天然气物性的相关经验公式. 新疆石油地质, 1989, 10(2):48-55. CHEN Y Q. Empirical formulas to determine the petrophysical property of natural gas. Xinjiang Petroleum Geology, 1989, 10(2):48-55.
[13] 于忠良, 熊伟, 高树生, 等.致密储层应力敏感性及其对油田开发的影响. 石油学报, 2007, 28(4):95-98. YU Z L, XIONG W, GAO S S, et al. Stress sensitivity of tight reservoir and its influence on oilfield development. Acta Petrolei Sinica, 2007, 28(4):95-98.
[1] 冉逸轩, 王健, 张熠. 松辽盆地北部中央古隆起基岩气藏形成条件与有利勘探区[J]. 岩性油气藏, 2024, 36(6): 66-76.
[2] 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88.
[3] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[4] 屈卫华, 田野, 董常春, 郭小波, 李立立, 林斯雅, 薛松, 杨世和. 松辽盆地德惠断陷白垩系烃源岩特征及其控藏作用[J]. 岩性油气藏, 2024, 36(6): 122-134.
[5] 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159.
[6] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[7] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[8] 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155.
[9] 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166.
[10] 程焱, 王波, 张铜耀, 齐玉民, 杨纪磊, 郝鹏, 李阔, 王晓东. 渤中凹陷渤中A-2区新近系明化镇组岩性油气藏油气运移特征[J]. 岩性油气藏, 2024, 36(5): 46-55.
[11] 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84.
[12] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[13] 卞保力, 刘海磊, 蒋文龙, 王学勇, 丁修建. 准噶尔盆地盆1井西凹陷石炭系火山岩凝析气藏的发现与勘探启示[J]. 岩性油气藏, 2024, 36(3): 96-105.
[14] 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126.
[15] 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .