岩性油气藏 ›› 2017, Vol. 29 ›› Issue (4): 162168.doi: 10.3969/j.issn.1673-8926.2017.04.020
• 石油工程 • 上一篇
游靖1, 王志坤2, 余吉良1, 张超2, 孙霜青2, 胡松青2
YOU Jing1, WANG Zhikun2, YU Jiliang1, ZHANG Chao2, SUN Shuangqing2, HU Songqing2
摘要: 在注水开发过程中,油层或采出系统结垢会大大影响生产效率。开展地层水与注入水结垢规律和机理研究,可对现场除垢技术提供理论指导。采用Davis-Stiff饱和指数法和Ryznar稳定指数法,对华北油田京11区块地层水和注入水在不同温度、pH和成垢离子质量浓度等影响因素下的结垢趋势进行了预测,同时开展静态结垢实验研究了模拟水样的结垢规律。结果表明:华北油田京11区块地层水和注入水的离子组成和质量浓度非常接近且均具有严重的结垢趋势,且地层水的结垢趋势略高于注入水,垢样主要为碳酸钙;模拟水样的实际结垢率可达61%;温度、pH以及成垢离子质量浓度的升高均能大幅提高模拟水样的结垢率,结垢率的增长幅度随温度和pH的升高逐渐增大,而随成垢离子质量浓度的升高逐渐减小。
中图分类号:
[1] 李传亮, 朱苏阳. 水驱油效率可达到100%. 岩性油气藏, 2016, 28(1):1-5. LI C L, ZHU S Y. The efficiency of water flooding can reach 100%. Lithologic Reservoirs, 2016, 28(1):1-5. [2] 徐豪飞, 马宏伟, 尹相荣, 等.新疆油田超低渗透油藏注水开发储层损害研究.岩性油气藏, 2013, 25(2):100-106. XU H F, MA H W, YIN X R, et al. Study on formation damage with water flooding for ultra-low permeability reservoir in Xinjiang Oilfield. Lithologic Reservoirs, 2013, 25(2):100-106. [3] 王平, 姜瑞忠, 王公昌, 等.低矿化度水驱研究进展及展望.岩性油气藏, 2012, 24(2):106-110. WANG P, JIANG R Z, WANG G C, et al. Research advance and prospect of low salinity water flooding. Lithologic Reservoirs, 2012, 24(2):106-110. [4] 李志文, 樊栓狮, 刘文忠, 等.超声波对开水器内CaCO3结垢行为及其形态的影响.化工学报, 2015, 66(6):2256-2261. LI Z W, AN S S, LIU W Z, et al. Effect of ultrasonic on beha-vior and morphology of calcium carbonate fouling within water boiler. Journal of Chemical Industry and Engineering(China), 2015, 66(6):2256-2261. [5] 符嫦娥,胡大华,韩承辉,等.两种封端聚醚大单体及其共聚物制备与阻磷酸钙垢应用. 化工学报, 2013, 64(7):2687-2695. FU C E,HU D W,HAN C H,et al. Synthesis of capped polyether macromonomers and their copolymers as antiscalants for calcium phosphate. Journal of Chemical Industry and Engineering(China), 2013, 64(7):2687-2695. [6] 彭德其,史冰乐,俞天兰,等.振动往复螺旋清洗机构及其防垢性能.化工学报, 2013, 64(9):3168-3174. PENG D Q,SHI B L,YU T L,et al. Cleaning mechanism and scale prevention of reciprocating and vibrating spiral-insert. Journal of Chemical Industry and Engineering(China), 2013, 64(9):3168-3174. [7] 符嫦娥,周钰明,薛蒙伟, 等.新型无磷无氮阻垢剂的阻磷酸钙垢及分散Fe (Ⅲ)性能.化工学报, 2011, 62(2):525-531. FU C E, ZHOU Y M, XUE M W, et al. Novel phosphorus-free and nitrogen-free anti-scalant for calcium phosphate and Fe (Ⅲ). Journal of Chemical Industry and Engineering(China), 2011, 62(2):525-531. [8] 陈园园, 王宝辉, 隋欣.三元复合驱硅酸盐垢的影响因素及结垢机理研究.油田化学, 2010, 27(4):449-452. CHEN Y Y, WANG B H, SUI X. Research on influencing factors and mechanism of silica scale in ASP flooding. Oilfield Chemistry, 2010, 27(4):449-452. [9] STIFF H A, DAVIS L E. A method of predicting the tendency of oilfield water to deposit calcium carbonate. Journal of Petroleum Technology, 1952, 4(9):213-216. [10] RYZNAR J W. A new index for determining amount of calcium scale formed by a water. American Water Works Association, 1944, 36(4):472-486. [11] 李丽, 刘建仪, 张威, 等.有水气藏多相平衡结垢预测方法研究(Ⅰ) -模型的建立.油田化学, 2012, 29(3):344-348. LI L, LIU J Y, ZHANG W, et al. Research of the scaling prediction method considering multiphase equilibria in gas reservoir with water(Ⅰ)establishment of model. Oilfield Chemistry, 2012, 29(3):344-348. [12] 国家发展和改革委员会.油田水分析方法:SY/T 5523-2006. 北京:中国标准出版社, 2006. National Development and Reform Commission. Practice for analysis of oilfield waters:SY/T 5523-2006. Beijing:China Standards Press, 2006. [13] 国家能源局.碎屑岩油藏注水水质推荐指标及分析方法:SY/T 5329-2012.北京:中国标准出版社, 2012. National Energy Administration. Water quality standard and practice for analysis of oilfield injecting waters in clastic reservoirs:SY/T 5329-2012. Beijing:China Standards Press, 2012. [14] 国家能源局.油田水结垢趋势预:SY/T 0600-2009.北京:中国标准出版社, 2009. National Energy Administration. Prediction of scaling tendency in oil-field water:SY/T 0600-2009. Beijing:China Standards Press, 2009. [15] KAMARI A, GHARAGHEIZI F, BAHADORI A, et al. Determination of the equilibrated calcium carbonate(calcite)scaling in aqueous phase using a reliable approach. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4):1307-1313. [16] LI Z M, ZAHANG D Y, QIN G S, et al. Studies on the scaling of high pressure and low permeability oil reservoir water injection well. Advances in Petroleum Exploration and Development, 2014, 8(1):1-8. [17] MAGUIRE-BOYLE S J, BARRON A R. Organic compounds in produced waters from shale gas wells. Environmental Science:Processes & Impacts, 2014, 16(10):2237-2248. [18] 国家环境保护局.水质钙的测定EDTA滴定法:GB 7476-87. 北京:中国标准出版社, 1987. State Department of Environmental Conservation. Water qualitydetermination of calcium-EDTA titrimetrlc method:GB 7476-87. Beijing:China Standards Press, 1987. [19] 杨庆峰, 顾安忠, 丁洁, 等.换热面上碳酸钙的结垢行为及垢形.化工学报, 2002, 53(9):924-930. YANG Q F, GU A Z, DING J, et al. Calcium carbonate fouling behavior and morphology. Journal of Chemical Industry and Engineering(China), 2002, 53(10):924-930. [20] PENA J, BUIL B, GARRALON A, et al. The vaterite saturation index can be used as a proxy of the S & DSI in sea water desalination by reverse osmosis process. Desalination, 2010, 254(1):75-79. [21] 尹先清, 伍家忠, 王正良.油田注入水碳酸钙垢结垢机理分析与结垢预测.石油勘探与开发, 2002, 29(3):85-87. YIN X Q, WU J Z, WANG Z L. Analysis and prediction of scaling mechanism of the CaCO3 from oilfield injection waters. Petroleum Exploration and Development, 2002, 29(3):85-87. [22] 熊蓉春, 周庆, 魏刚.绿色阻垢剂聚环氧琥珀酸的缓蚀协同效应.化工学报, 2003, 54(9):1323-1325. XIONG R C, ZHOU Q, WEI G. Corrosion inhibition and synergistic effect of green scale inhibitor polyepoxysuccinic acid. Journal of Chemical Industry and Engineering(China), 2003, 54(9):1323-1325. [23] TU Y, ZHANG J, XUE C L, et al. A Bohai Sea SZ36-1 Oil field formation scaling experimental study and scale inhibitor optimization. Petroleum Science and Technology,2014,32(20):2512-2519. [24] LI X C, GAO B Y, YUE Q Y, et al. Effect of six kinds of scale inhibitors on calcium carbonate precipitation in high salinity wastewater at high temperatures. Journal of Environmental Sciences, 2015, 29:124-130. |
[1] | 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98. |
[2] | 李盛谦, 曾溅辉, 刘亚洲, 李淼, 焦盼盼. 东海盆地西湖凹陷孔雀亭地区古近系平湖组储层成岩作用及孔隙演化[J]. 岩性油气藏, 2023, 35(5): 49-61. |
[3] | 冯明友, 高瑞琪, 王兴志, 徐亮, 赵金, 刘小洪, 尚俊鑫. 川西南宝兴地区二叠系栖霞组一段白云岩储层充填序列及流体指示[J]. 岩性油气藏, 2023, 35(2): 11-20. |
[4] | 肖玲, 陈曦, 雷宁, 易涛, 郭文杰. 鄂尔多斯盆地合水地区三叠系长7段页岩油储层特征及主控因素[J]. 岩性油气藏, 2023, 35(2): 80-93. |
[5] | 曾治平, 柳忠泉, 赵乐强, 李艳丽, 王超, 高平. 准噶尔盆地西北缘哈山地区二叠系风城组页岩油储层特征及其控制因素[J]. 岩性油气藏, 2023, 35(1): 25-35. |
[6] | 文志刚, 罗雨舒, 刘江艳, 赵春雨, 李士祥, 田伟超, 樊云鹏, 高和婷. 陇东地区三叠系长7段页岩油储层孔隙结构特征及成因机制[J]. 岩性油气藏, 2022, 34(6): 47-59. |
[7] | 吕正祥, 廖哲渊, 李岳峰, 宋修章, 李响, 何文军, 黄立良, 卿元华. 玛湖凹陷二叠系风城组碱湖云质岩储层成岩作用[J]. 岩性油气藏, 2022, 34(5): 26-37. |
[8] | 魏钦廉, 王翀峘, 刘军峰, 胡榕, 刘美荣, 吕玉娟. 鄂尔多斯盆地樊家川地区三叠系长63储层特征及主控因素[J]. 岩性油气藏, 2022, 34(2): 31-44. |
[9] | 张玉晔, 高建武, 赵靖舟, 张恒, 吴和源, 韩载华, 毛朝瑞, 杨晓. 鄂尔多斯盆地东南部长6油层组致密砂岩成岩作用及其孔隙度定量恢复[J]. 岩性油气藏, 2021, 33(6): 29-38. |
[10] | 许璟, 贺永红, 马芳侠, 杜彦军, 马浪, 葛云锦, 王瑞生, 郭睿, 段亮. 鄂尔多斯盆地定边油田主力油层有效储层厚度[J]. 岩性油气藏, 2021, 33(5): 107-119. |
[11] | 柴毓, 王贵文, 柴新. 四川盆地金秋区块三叠系须二段储层非均质性及成因[J]. 岩性油气藏, 2021, 33(4): 29-40. |
[12] | 郑荣臣, 李宏涛, 史云清, 肖开华. 川东北元坝地区三叠系须三段沉积特征及成岩作用[J]. 岩性油气藏, 2021, 33(3): 13-26. |
[13] | 王朋, 孙灵辉, 王核, 李自安. 鄂尔多斯盆地吴起地区延长组长6储层特征及其控制因素[J]. 岩性油气藏, 2020, 32(5): 63-72. |
[14] | 王继伟, 朱玉双, 饶欣久, 周树勋, 吴英强, 杨红梅. 鄂尔多斯盆地胡尖山地区长61致密砂岩储层成岩特征与孔隙度定量恢复[J]. 岩性油气藏, 2020, 32(3): 34-43. |
[15] | 徐子煜, 王安, 韩长城, 田继军, 张军生, 刘磊, 张楠. 玛湖地区三叠系克拉玛依组优质砂砾岩储层形成机制[J]. 岩性油气藏, 2020, 32(3): 82-92. |
|