岩性油气藏 ›› 2023, Vol. 35 ›› Issue (2): 11–20.doi: 10.12108/yxyqc.20230202

• 地质勘探 • 上一篇    下一篇

川西南宝兴地区二叠系栖霞组一段白云岩储层充填序列及流体指示

冯明友1, 高瑞琪1,2, 王兴志1, 徐亮3, 赵金4, 刘小洪1, 尚俊鑫1   

  1. 1. 西南石油大学 地球科学与技术学院, 成都 610500;
    2. 中国石油西南油气田公司 蜀南气矿勘探开发研究所, 四川 泸州 646000;
    3. 中国石油西南油气田公司 勘探开发研究院, 成都 610041;
    4. 广元市剑阁县自然资源局, 四川 广元 628317
  • 收稿日期:2022-03-26 修回日期:2022-05-26 出版日期:2023-03-01 发布日期:2023-03-07
  • 作者简介:冯明友(1981-),男,博士,副教授,主要从事储层地质及非常规油气地质方面的教学与研究工作。地址:(610500)四川省成都市新都区新都大道8号。Email:fmyswpu@163.com。
  • 基金资助:
    国家科技重大专项“四川盆地二、三叠系构造—沉积演化及储层形成机制研究”(编号:2016ZX05007004-001)与中国石油碳酸盐岩重点实验室创新基金项目“热液溶蚀及沉淀作用对深层碳酸盐岩储层复合改造机理”(编号:RIPED-HZDZY-2019-JS-695)联合资助。

Sequence filling succession and fluid indication of dolomite reservoirs of the first member of Permian Qixia Formation in Baoxing area, southwestern Sichuan Basin

FENG Mingyou1, GAO Ruiqi1,2, WANG Xingzhi1, XU Liang3, ZHAO Jin4, LIU Xiaohong1, SHANG Junxin1   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. Institute of Exploration and Development, Shunan Gas Field, PetroChina Southwest Oil & Gas Filed Company, Luzhou 646000, Sichuan, China;
    3. Research Institute of Exploration and Development, PetroChina Southwest Oil & Gas Filed Company, Chengdu 610041, China;
    4. Natural Resources Bureau of Jiange County, Guangyuan 628317, Sichuan, China
  • Received:2022-03-26 Revised:2022-05-26 Online:2023-03-01 Published:2023-03-07

摘要: 川西南中二叠统栖霞组白云岩受多期成岩作用改造明显,优质储层成因复杂。结合野外勘察、宏观—微观岩石学特征、阴极发光及流体包裹体测温等对研究区白云岩储层充填特征展开分析。研究结果表明: ①川西南宝兴地区中二叠统栖霞组一段白云岩由半自形中—粗晶白云石组成,斑马构造及构造角砾白云岩发育,储集空间类型以残余晶间孔、残余晶间溶孔及溶蚀缝为主,其次为扩溶缝及晶洞,孔隙度多为1%~4%。②研究区白云岩储层以中—粗晶鞍状白云石及亮晶方解石充填为主,其次为少量石英充填,局部见中—粗晶白云石呈带状与方解石共同分布于裂缝中,总体上白云岩的分布受断层控制明显,缝洞较发育且表现为粗晶鞍状白云石→石英→方解石的充填序列。③研究区在中—晚三叠纪,深盆富镁热卤水沿断裂进入地层并交代原岩形成热液白云岩,热液冷却效应对早期储层进行溶蚀改造,并伴随压力降低导致粗晶鞍状白云石及少量方解石沉淀;侏罗纪末期受燕山运动影响,深盆富硅热液进入储层,部分交代早期鞍状白云石并见少量石英充填孔洞;燕山期晚期,高温-低盐度富二氧化碳流体因构造抬升过饱和析出晚期方解石,大幅度降低了储集空间。④多期流体对白云岩复合改造后,区内储层致密化明显,部分孔洞缝连通的晶粒白云岩可形成渗透性储层。

关键词: 热液白云岩, 流体作用, 充填序列, 成岩作用, 栖霞组, 二叠系, 宝兴地区, 川西南

Abstract: Dolomites of Qixia Formation of Middle Permian in Baoxing area of southwestern Sichuan Basin display a complex diagenetic alteration and complex genesis of high-quality reservoirs. The filling characteristics of dolomite reservoirs in the study area were analyzed based on field investigation, macroscopic and microscopic petrological characteristics, cathodoluminescence and fluid inclusion measurement. The results show that:(1) The dolomites of the first member of Qixia Formation of Middle Permian are composed of subhedral medium to coarse-grained dolomites, with zebra texture and tectonic breccia developed. The reservoir spaces are mainly residual intercrystalline pores, residual intercrystalline dissolved pores and dissolved fractures, followed by expanding dissolved fractures and geodes, with porosity of 1%-4%.(2) The dolomite reservoirs in the study area are mainly filled with medium to coarse-grained saddle dolomites and bright crystal calcites, followed by a small amount of quartzs. Locally, medium to coarse-grained dolomites are distributed in the fractures together with calcites in a belt shape. In general, the distribution of dolomites is obviously controlled by faults, and the fractures and caves are relatively developed, and the filling sequence is coarse-grained saddle dolomite-quartz-calcite.(3) During the Middle-Late Triassic period, the Mg-rich thermal brine in deep basin entered the formation along faults and replaced original rock to form hydrothermal dolomites. The hydrothermal cooling effect carried out the dissolution transformation of the early reservoirs, and accompanied by the pressure reduction, led to the precipitation of coarse-grained saddle dolomite and a small amount of calcite. Under the influence of Yanshan movement at the end of Jurassic, the silicon-rich hydrothermal solution in deep basin entered the reservoir and replaced some saddle dolomites and a small amount of quartzs filled holes. In the late Yanshanian period, the carbon dioxide rich fluids with high-temperature and low salinity were supersaturated due to tectonic uplift and precipitated late calcites, which greatly reduced the reservoir space.(4) The reservoirs are intense densification after episodic fluid alteration, and part of the residual vugs or fracture networks are relative porous for hydrocarbon accumulation and migration.

Key words: hydrothermal dolomite, fluid action, filling action, diagenesis, Qixia Formation, Permian, Baoxing area, southwestern Sichuan Basin

中图分类号: 

  • TE122.2
[1] 赵文智, 沈安江, 乔占峰, 等.白云岩成因类型、识别特征及储集空间成因[J].石油勘探与开发, 2018, 45(6):923-935. ZHAO Wenzhi, SHEN Anjiang, QIAO Zhanfeng, et al. Genetic types and distinguished characteristics of dolostone and the origin of dolostone reservoirs[J]. Petroleum Exploration and Development, 2018, 45(6):923-935.
[2] 周进高, 郝毅, 邓红婴, 等.四川盆地中西部栖霞组-茅口组孔洞型白云岩储层成因与分布[J]. 海相油气地质, 2019, 24(4):67-78. ZHOU Jingao, HAO Yi, DENG Hongying, et al. Genesis and distribution of vuggy dolomite reservoirs of the Lower Permian Qixia Formation and Maokou Formation, western-central Sichuan Basin[J]. Marine Origin Petroleum Geology, 2019, 24(4):67-78.
[3] 谭秀成, 肖笛, 陈景山, 等.早成岩期喀斯特化研究新进展及意义[J].古地理学报, 2015, 17(4):441-456. TAN Xiucheng, XIAO Di, CHEN Jingshan, et al. New advance and enlightenment of eogenetic karstification[J]. Journal of Paleogeography(Chinese Edition), 2015, 17(4):441-456.
[4] 朱东亚, 金之钧, 胡文瑄.塔北地区下奥陶统白云岩热液重结晶作用及其油气储集意义[J].中国科学:地球科学, 2010, 40(2):156-170. ZHU Dongya, JIN Zhijun, HU Wenxuan. Hydrothermal recrystallization of the Lower Ordovician dolomite and its significance to reservoir in northern Tarim Basin[J]. Science China:Earth Science, 2010, 40(2):156-170.
[5] 冯明友, 张帆, 李跃纲, 等.川西地区中二叠统栖霞组优质白云岩储层特征及形成机理[J]. 中国科技论文, 2015, 10(3):280-286. FENG Mingyou, ZHANG Fan, LI Yuegang, et al. Characteristics and formation mechanism of Qixia Formation(Middle Permian) dolomite reservoirs in western Sichuan Basin[J]. China Sciencepaper, 2015, 10(3):280-286.
[6] 杨雨然, 张亚, 谢忱, 等.川西北地区中二叠统栖霞组热液作用及其对储层的影响[J].岩性油气藏, 2019, 31(6):44-53. YANG Yuran, ZHANG Ya, XIE Chen, et al. Hydrothermal action of Middle Permian Qixia Formation in northwestern Sichuan Basin and its effect on reservoirs[J]. Lithologic Reservoirs, 2019, 31(6):44-53.
[7] 王海真, 池英柳, 赵宗举, 等.四川盆地栖霞组岩溶储层及勘探选区[J].石油学报, 2013, 34(5):833-842. WANG Haizhen, CHI Yingliu, ZHAO Zongju, et al. Karst reservoirs developed in the Middle Permian Qixia Formation of Sichuan Basin and selection of exploration regions[J]. Acta Petrolei Sinica, 2013, 34(5):833-842.
[8] 李蓉, 苏成鹏, 贾霍甫, 等.川西南地区中二叠统栖霞组白云岩成因[J].岩性油气藏, 2022, 34(4):103-115. LI Rong, SU Chengpeng, JIA Huofu, et al. Reservoir characteristics and genesis of dolomite of Middle Permian Qixia Formation in southwestern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(4):103-115.
[9] EHRENBERG S N, EBERLI G P, KERAMATI M, et al. Porositypermeability relationships in interlayered limestone-dolostone reservoirs[J]. AAPG Bulletin, 2006, 90(1):91-114.
[10] EHRENBERG S N, WALDERHAUG O, BJØRLYKKE K. Carbonate porosity creation by mesogenetic dissolution:Reality or illusion?[J]. AAPG Bulletin, 2012, 96(2):217-233.
[11] 张单明, 秦善, 刘波, 等.碳酸盐岩-H2S平衡体系原位溶蚀模拟实验及其地质意义[J].北京大学学报(自然科学版), 2015, 51(4):745-754. ZHANG Shanming, QIN Shan, LIU Bo, et al. In-situ simulation experiment of carbonate-hydrogen sulfide equilibrium system and its geological significance[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(4):745-754.
[12] 黄成刚, 袁剑英, 吴梁宇, 等.湖相白云岩成因模式及研究方法探讨[J].岩性油气藏, 2016, 28(2):7-15. HUANG Chenggang, YUAN Jianying, WU Liangyu, et al. Origin and research methods of lacustrine dolomite[J]. Lithologic Reservoirs, 2016, 28(2):7-15.
[13] HIRANI J, BASTESEN E, BOYCE A, et al. Controls on the formation of stratabound dolostone bodies, Hammam Faraun Fault block, Gulf of Suez[J]. Sedimentology, 2018, 65(6):1973-2002.
[14] HUNTINGTON K W, BUDD D A, WERNICHE B P, et al. Use of Clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite[J]. Journal of Sedimentary Research, 2011, 81(9/10):656-669.
[15] 沈安江, 赵文智, 胡安平, 等.碳酸盐矿物定年和定温技术及其在川中古隆起油气成藏研究中的应用[J]. 石油勘探与开发, 2021, 48(3):1-12. SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al. The dating and temperature measurement technologies for carbonate minerals and their application in hydrocarbon accumulation research in the paleo-uplift in central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(3):1-12.
[16] DAVIES G R, SMITH L B. Structurally controlled hydrothermal dolomite reservoir facies:An overview[J]. AAPG Bulletin, 2006, 90(11):1641-1690.
[17] 陈代钊.构造-热液白云岩化作用与白云岩储层[J].石油与天然气地质, 2008, 29(5):614-622. CHEN Daizhao. Structure-controlled hydrothermal dolomitization and hydrothermal dolomite reservoirs[J]. Oil & Gas Geology, 2008, 29(5):614-622.
[18] 魏国齐, 杨威, 朱永刚, 等.川西地区中二叠统栖霞组沉积体系[J].石油与天然气地质, 2010, 31(4):442-448. WEI Guoqi, YANG Wei, ZHU Yonggang, et al. Depositional system of the Middle Permian Qixia Formation in the western Sichuan Basin[J]. Oil & Gas Geology, 2010, 31(4):442-448.
[19] 关新, 陈世加, 苏旺, 等.四川盆地西北部栖霞组碳酸盐岩储层特征及主控因素[J].岩性油气藏, 2018, 30(2):67-76. GUAN Xin, CHEN Shijia, SU Wang, et al. Carbonate reservoir characteristics and main controlling factors of Middle Permian Qixia Formation in NW Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(2):67-76.
[20] 张本健, 尹宏, 李荣容, 等.四川盆地西南部平探1井中二叠统栖霞组天然气勘探新突破及其意义[J].天然气工业, 2020, 40(7):34-41. ZHANG Benjian, YIN Hong, LI Rongrong, et al. New breakthrough of natural gas exploration in the Qixia Formation of Middle Permian by well Pingtan 1 in the southwestern Sichuan Basin and its implications[J]. Natural Gas Industry, 2020, 40(7):34-41.
[21] 冯轲, 徐胜林, 陈洪德, 等.四川盆地西南部中二叠统白云岩成因分析:来自锶同位素、稀土元素证据[J].中国岩溶, 2018, 37(5):23-34. FENG Ke, XU Shenglin, CHEN Hongde, et al. Genesis of the Middle Permian dolomite in the southwestern Sichuan Basin:Evidence from strontium isotope and rare earth elements[J]. Carsologica Sinica, 2018, 37(5):23-34.
[22] 梁宁, 郑荣才, 邓吉刚, 等.川西北地区中二叠统栖霞组沉积相与缓斜坡模式[J].岩性油气藏, 2016, 28(6):58-67. LIANG Ning, ZHENG Rongcai, DENG Jigang, et al. Sedimentary facies and gentle slope model of the Middle Permian Qixia Formation in the northwestern Sichuan Basin[J]. Lithologic Reservoirs, 2016, 28(6):58-67.
[23] FENG Mingyou, WU Pengcheng, QIANG Zitong, et al. Hydrothermal dolomite reservoir in the Precambrian Dengying Formation of central Sichuan Basin, southwestern China[J]. Marine and Petroleum Geology. 2017, 82:206-219.
[24] 傅饶, 郑荣才, 常海亮, 等.湖相"白烟型" 喷流岩——新型的致密油储层类型:以准噶尔盆地西缘乌尔禾地区风城组为例[J].岩性油气藏, 2015, 27(3):32-42. FU Rao, ZHENG Rongcai, CHANG Hailiang, et al. Lacustrine "white smoke type" exhalative rock-A new type of tight oil reservoir:A case study from Lower Permian Fengcheng Formation in Urho area, western margin of Junggar Basin[J]. Lithologic Reservoirs, 2015, 27(3):32-42.
[25] KATZ D A, EBERLI G P, SWART P K, et al. Tectonic-hydrothermal brecciation associated with calcite precipitation and permeability destruction in Mississippian carbonate reservoirs Montana and Wyoming[J]. AAPG Bulletin, 2006, 90(11):1803-1841.
[26] PAN Liyin, SHEN Anjiang, ZHAO Jianxin, et al. LA-ICP-MS U-Pb geochronology and clumped isotope constraints on the formation and evolution of an ancient dolomite reservoir:The Middle Permian of Northwest Sichuan Basin(SW China)[J]. Sedimentary Geology, 2020, 407(105728):1-17.
[27] GORDON T M, GREENWOOD H J. The reaction:Dolomite+ quartz+water=talc+calcite+carbon dioxide[J]. American Journal of Science, 1970, 268(3):225-242.
[28] 王小林, 万野, 胡文瑄, 等.白云石与富硅流体的水-岩反应实验及其储层地质意义[J].地质论评, 2017, 63(6):1639-1652. WANG Xiaolin, WAN Ye, HU Wenxuan, et al. Experimental studies on the interactions between dolomite and SiO 2-rich fluids:Implications for the formation of carbonate reservoirs[J]. Geological Review, 2017, 63(6):1639-1652.
[29] JIA Y, LI X, KERRICH R. A fluid inclusion study of Au-bearing quartz vein systems in the central and North Deborah deposits of the Bendigo gold field, central Victoria, Australia[J]. Economic Geology, 2000, 95(3):467-494.
[30] BONS P D, MILLIGEN B P V. New experiment to model self-organized critical transport and accumulation of melt and hydrocarbons from their source rocks[J]. Geology, 2001, 29(10):919-922.
[31] RONCHIA P, MASETTIB D, TASSANC S, et al. Hydrothermal dolomitization in platform and basin carbonate successions during thrusting:A hydrocarbon reservoir analogue(Mesozoic of Venetian Southern Alps, Italy)[J]. Marine and Petroleum Geology, 2012, 29:68-89.
[1] 肖玲, 陈曦, 雷宁, 易涛, 郭文杰. 鄂尔多斯盆地合水地区三叠系长7段页岩油储层特征及主控因素[J]. 岩性油气藏, 2023, 35(2): 80-93.
[2] 马东烨, 陈宇航, 赵靖舟, 吴伟涛, 宋平, 陈梦娜. 鄂尔多斯盆地东部二叠系下石盒子组8段河流相砂体构型要素[J]. 岩性油气藏, 2023, 35(1): 63-73.
[3] 杨跃明, 张少敏, 金涛, 明盈, 郭蕊莹, 王兴志, 韩璐媛. 川南地区二叠系龙潭组页岩储层特征及勘探潜力[J]. 岩性油气藏, 2023, 35(1): 1-11.
[4] 曾治平, 柳忠泉, 赵乐强, 李艳丽, 王超, 高平. 准噶尔盆地西北缘哈山地区二叠系风城组页岩油储层特征及其控制因素[J]. 岩性油气藏, 2023, 35(1): 25-35.
[5] 李凌, 张照坤, 李明隆, 倪佳, 耿超, 唐思哲, 杨文杰, 谭秀成. 四川盆地威远—高石梯地区二叠系栖霞阶层序地层特征及有利储层分布[J]. 岩性油气藏, 2022, 34(6): 32-46.
[6] 文志刚, 罗雨舒, 刘江艳, 赵春雨, 李士祥, 田伟超, 樊云鹏, 高和婷. 陇东地区三叠系长7段页岩油储层孔隙结构特征及成因机制[J]. 岩性油气藏, 2022, 34(6): 47-59.
[7] 米伟伟, 谢小飞, 曹红霞, 马强, 杜永慧, 张琼, 邓长生, 宋珈萱. 鄂尔多斯盆地东南部二叠系山2—盒8段致密砂岩储层特征及主控因素[J]. 岩性油气藏, 2022, 34(6): 101-117.
[8] 何文渊, 云建兵, 钟建华. 川东北二叠系长兴组碳酸盐岩云化成储机制[J]. 岩性油气藏, 2022, 34(5): 1-25.
[9] 杨帆, 卞保力, 刘慧颖, 姚宗全, 尤新才, 刘海磊, 卫延召. 玛湖凹陷二叠系夏子街组限制性湖盆扇三角洲沉积特征[J]. 岩性油气藏, 2022, 34(5): 63-72.
[10] 罗锦昌, 田继军, 马静辉, 闫嘉启, 梁雅菲, 胡卓浩. 吉木萨尔凹陷吉页1井区二叠系芦草沟组沉积环境及有机质富集机理[J]. 岩性油气藏, 2022, 34(5): 73-85.
[11] 吕正祥, 廖哲渊, 李岳峰, 宋修章, 李响, 何文军, 黄立良, 卿元华. 玛湖凹陷二叠系风城组碱湖云质岩储层成岩作用[J]. 岩性油气藏, 2022, 34(5): 26-37.
[12] 阴钰毅, 姚志纯, 郭小波, 王乐立, 陈思谦, 余小雷, 岑向阳. 鄂尔多斯盆地西缘二叠系隐伏构造特征及勘探意义[J]. 岩性油气藏, 2022, 34(4): 79-88.
[13] 张记刚, 杜猛, 陈超, 秦明, 贾宁洪, 吕伟峰, 丁振华, 向勇. 吉木萨尔凹陷二叠系芦草沟组页岩储层孔隙结构定量表征[J]. 岩性油气藏, 2022, 34(4): 89-102.
[14] 李蓉, 苏成鹏, 贾霍甫, 石国山, 林辉, 李素华. 川西南地区中二叠统栖霞组白云岩储层特征及成因[J]. 岩性油气藏, 2022, 34(4): 103-115.
[15] 白雨, 汪飞, 牛志杰, 金开来, 李沛毅, 许多年, 陈刚强. 准噶尔盆地玛湖凹陷二叠系风城组烃源岩生烃动力学特征[J]. 岩性油气藏, 2022, 34(4): 116-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!