岩性油气藏 ›› 2019, Vol. 31 ›› Issue (3): 76–85.doi: 10.12108/yxyqc.20190309

• 勘探技术 • 上一篇    下一篇

基于常规测井和成像测井的致密储层裂缝识别方法——以准噶尔盆地吉木萨尔凹陷芦草沟组为例

刘冬冬1,2, 杨东旭1,2, 张子亚3, 张晨1,4, 罗群1,2, 潘占昆1,2, 黄治鑫1,2   

  1. 1. 中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102249;
    2. 中国石油大学(北京)非常规油气科学技术研究院, 北京 102249;
    3. 中国地质调查局 油气资源调查中心, 北京 100083;
    4. 中国石油大学(北京)地球科学学院, 北京 102249
  • 收稿日期:2018-10-26 修回日期:2019-01-20 出版日期:2019-05-21 发布日期:2019-05-06
  • 作者简介:刘冬冬(1987-),男,博士,副研究员,主要从事非常规油气成藏条件及地质评价方面的研究工作。地址:(102249)北京市昌平区府学路18号。Email:liudd@cup.edu.cn。
  • 基金资助:
    国家重点基础研究发展计划“973”项目“陆相致密油甜点成因机制及精细表征”(编号:2015CB250901)及国家自然科学基金(青年基金)“天山地区上二叠统—中、下三叠统不整合类型及成因机制”(编号:41502209)联合资助

Fracture identification for tight reservoirs by conventional and imaging logging: a case study of Permian Lucaogou Formation in Jimsar Sag,Junggar Basin

LIU Dongdong1,2, YANG Dongxu1,2, ZHANG Ziya3, ZHANG Chen1,4, LUO Qun1,2, PAN Zhankun1,2, HUANG Zhixin1,2   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    2. Unconventional Petroleum Research Institute, China University of Petroleum(Beijing), Beijing 102249, China;
    3. Oil & Gas Survey, China Geological Survey, Beijing 100029, China;
    4. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China
  • Received:2018-10-26 Revised:2019-01-20 Online:2019-05-21 Published:2019-05-06

摘要: 测井技术在常规储层裂缝识别和分析中应用广泛,但在致密储层裂缝识别方面应用较少。以准噶尔盆地吉木萨尔凹陷芦草沟组致密储层为研究对象,应用常规测井和成像测井方法对致密储层裂缝进行了识别和定量表征,系统总结了常规测井和成像测井裂缝的识别特征,并将上下"甜点"体裂缝发育情况进行了对比。结果显示,孔隙度测井对裂缝响应较好,电阻率测井对裂缝响应一般,岩性测井对裂缝响应最不明显;在裂缝发育较多的层段,自然伽马值多高于70 API,浅探测电阻率一般小于80 Ω·m,岩层体积密度小于2.43 g/cm3,中子孔隙度大于28%,声波时差大于246 μs/m。成像测井对不同的填充物响应特征不同,根据不同地质结构的成像测井特征,划分出块状、条带状、线状等多种成像测井模式。芦草沟组致密储层上下"甜点"体裂缝倾向分布一致、力学成因相似、相对线密度相差不大,但下"甜点"体裂缝宽度较大,部分层段裂缝集中程度相对较高,该认识对于致密储层裂缝的测井识别和定量评价具有重要意义。

关键词: 常规测井, 成像测井, 裂缝识别, 致密储层, 芦草沟组, 准噶尔盆地

Abstract: Well logging is widely used in identifying fractures in conventional reservoirs. However, this approach is rarely used in analyzing fractures in tight reservoirs. The fractures in the tight reservoir of Lucaogou Formation in Jimusar Sag were identified and quantitatively characterized by conventional logging and imaging logging methods, the response characteristics of conventional logging to fractures were systematically summarized, the fracture genesis were analyzed by using imaging logging data, and the development of the upper and lower sweet spots were compared. The results show that the conventional porosity logging is most applicable for identifying natural fractures in tight reservoirs, resistivity logging is also usable, and lithologic logging is poorly effective. In fracture developed zones, the natural gamma value is more than 70 API, the shallow resistivity is generally less than 80 Ω·m, the volume density of rock is less than 2.43 g/cm3, the neutron porosity is more than 28%, and the acoustic acoustic moveout is more than 246 μs/m. The imaging logging has different response characteristics to different fillers. According to the different imaging logging characteristics, the block, strip, linear and other imaging logging models were proposed. The natural fractures in the upper and lower sweet spots have similar dip direction, mechanical origin, and total linear density, though the fractures in the lower sweet spot display relatively larger width and develop more concentrated. These results are of great significance for the identification and evaluation of natural fractures in tight reservoirs.

Key words: conventional logging, imaging logging, identification of fractures, tight reservoirs, Lucaogou Formation, Junggar Basin

中图分类号: 

  • P631.8+4
[1] 曾联波.低渗透砂岩储层裂缝的形成与分布.北京:科学出版社, 2008:11-17. ZENG L B. Formation and distribution of fractures in low permeability sandstone reservoirs. Beijing:Science Press, 2008:11-17.
[2] 邓虎成, 周文, 周秋媚, 等. 新场气田须二气藏天然裂缝有效性定量表征方法及应用. 岩石学报, 2013, 29(3):1087-1097. DENG H C, ZHOU W, ZHOU Q M, et al. Quantification characterization of the valid natural fractures in the 2nd Xu member, Xinchang gas field. Acta Petrologica Sinica, 2013, 29(3):1087-1097.
[3] 尹帅, 丁文龙, 王濡岳, 等. 陆相致密砂岩及泥页岩储层纵横波波速比与岩石物理参数的关系及表征方法. 油气地质与采收率, 2015, 22(3):22-28. YIN S, DING W L, WANG R Y, et al. Characterization method of vp/vs and its relationship with rock physical parameters of continental tight sandstone and shale reservoir. Petroleum Geology and Recovery Efficiency, 2015, 22(3):22-28.
[4] 张娟, 周文, 邓虎成, 等. 麻黄山地区延安组、延长组储层裂缝特征及识别. 岩性油气藏, 2009, 21(4):53-57. ZHANG J, ZHOU W, DENG H C, et al. Fracture identification of reservoir of Yan'an and Yanchang Formation in Mahuangshan area. Lithologic Reservoirs, 2009, 21(4):53-57.
[5] 孙炜, 李玉凤, 付建伟, 等. 测井及地震裂缝识别研究进展. 地球物理学进展, 2014, 29(3):1231-1242. SUN W, LI Y F, FU J W, et al. Review of fracture identification with well logs and seismic data. Progress in Geophysics, 2014, 29(3):1231-1242.
[6] 李哲, 汤军, 张云鹏, 等. 鄂尔多斯盆地下寺湾地区长8储层裂缝特征研究. 岩性油气藏, 2012, 24(5):65-70. LI Z, TANG J, ZHANG Y P, et al. Fracture characteristics of Chang 8 reservoir of Yanchang Formation in Xiasiwan area, Ordos Basin. Lithologic Reservoirs, 2012, 24(5):65-70.
[7] 刘冬冬, 张晨, 罗群, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组致密储层裂缝发育特征及控制因素. 中国石油勘探, 2017, 22(4):36-47. LIU D D, ZHANG C, LUO Q, et al. Development characteristics and controlling factors of natural fractures in Permian Lucaogou Formation tight reservoir in Jimsar Sag, Junggar Basin. China Petroleum Exploration, 2017, 22(4):36-47.
[8] 丁超, 王佳玮. 准噶尔盆地吉木萨尔凹陷二叠系梧桐沟组沉积演化规律. 中国石油勘探, 2015, 20(3):22-29. DING C, WANG J W. Sedimentary development law of Permian Wutonggou Formation in Jimsar Sag of Junggar Basin. China Petroleum Exploration, 2015, 20(3):22-29.
[9] 匡立春, 胡文瑄, 王绪龙, 等. 吉木萨尔凹陷芦草沟组致密油储层初步研究:岩性与孔隙特征分析. 高校地质学报, 2013, 19(3):529-535. KUANG L C, HU W X, WANG X L, et al. Research of the tight oil reservoir in the Lucaogou Formation in Jimusar Sag:Analysis of lithology and porosity characteristics. Geological Journal of China Universities, 2013, 19(3):529-535.
[10] 葸克来, 操应长, 朱如凯, 等. 吉木萨尔凹陷二叠系芦草沟组致密油储层岩石类型及特征. 石油学报, 2015, 36(12):1495-1507. XI K L, CAO Y C, ZHU R K, et al. Rock types and characteristics of tight oil reservoir in Permian Lucaogou Formation, Jimusar Sag. Acta Petrolei Sinica, 2015, 36(12):1495-1507.
[11] 闫林, 冉启全, 高阳, 等. 吉木萨尔凹陷芦草沟组致密油储层溶蚀孔隙特征及成因机理. 岩性油气藏, 2017, 29(3):27-33. YAN L, RAN Q Q, GAO Y, et al. Characteristics and formation mechanism of dissolved pores in tight oil reservoirs of Lucaogou Formation in Jimsar Sag. Lithologic Reservoirs, 2017, 29(3):27-33.
[12] 李晓晖. 自然电位与自然伽马测井曲线在砂泥岩中的测井响应特征. 石化技术, 2017, 24(2):145. LI X H. Log response characteristics of SP and GR logging curve in sandstone and mudstone. Petrochemical Technology, 2017, 24(2):145.
[13] 董双波, 柯式镇, 张红静, 等. 利用常规测井资料识别裂缝方法研究. 测井技术, 2013, 37(4):380-384.DONG S B, KE S Z, ZHANG H J, et al. On fracture identification with conventional well logging data. Well Logging Technology, 2013, 37(4):380-384.
[14] 李华彬. 井径测井在煤田测井中的应用分析. 资源信息与工程, 2017, 32(1):60. LI H B. Application of well logging in coal well logging. Resource Information and Engineering, 2017, 32(1):60.
[15] 张光辉. 油气储层测井裂缝识别方法研究及软件研制. 成都:成都理工大学, 2011. ZHANG G H. Method research and software development of identification of fracture in oil or gas reservoir based on well logging. Chengdu:Chengdu University of Technology, 2011.
[16] 曾联波, 柯式镇, 刘洋. 低渗透油气储层裂缝研究方法. 北京:石油工业出版社, 2010:49-52. ZENG L B, KE S Z, LIU Y. Research methods of low-permeability oil and gas reservoir crack. Beijing:Petroleum Industry Press, 2010:49-52.
[17] 罗少成, 成志刚, 林伟川, 等. 致密油储层常规测井系列适应性评价研究. 复杂油气藏, 2014, 7(3):28-31. LUO S C, CHENG Z G, LIN W C, et al. Adaptability analysis of conventional logging series for tight oil reservoirs. Complex Hydrocarbon Reservoirs, 2014, 7(3):28-31.
[18] 洪有密. 测井原理及综合解释. 东营:中国石油大学出版社, 1998:159. HONG Y M. Logging principle and comprehensive interpretation. Dongying:Press of University of Petroleum, China, 1998:159.
[19] 方丽, 黄强, 匡华. 慢度-频率投影测井:一种精确计算声波慢度的新质量控制法. 国外测井技术, 2006, 21(3):60-63. FANG L, HUANG Q, KUANG H. Slow-frequency projection logging:a new quality control method that accurately calculates the slowness of sound waves. Foreign Logging Technology, 2006, 21(3):60-63.
[20] 魏成章, 李忠春, 吴昌吉. 柴达木盆地南翼山凝析气藏裂缝性储层特征. 天然气工业, 1999, 19(4):5-7. WEI C Z, LI Z C, WU C J. Characteristics of the fractured reservoir of condensate gas pool of Nanyishan oil field in Chaidamu Basin. Natural Gas Industry, 1999, 19(4):5-7.
[21] 刘兴周, 顾国忠, 李娜, 等. 成像测井裂缝期次研究及控油裂缝分布确定. 石油地质与工程, 2013, 27(5):39-42. LIU X Z, GU G Z, LI N, et al. The imaging fracture stage research and oil control fracture distribution determination. Petroleum Geology and Engineering, 2013, 27(5):39-42.
[22] 曹宇, 张超谟, 张占松, 等. 裂缝型储层电成像测井响应三维数值模拟. 岩性油气藏, 2014, 26(1):92-95. CAO Y, ZHANG C M, ZHANG Z S, et al. Three-dimensional numerical simulation of electrical imaging logging response in fractured reservoir. Lithologic Reservoirs, 2014, 26(1):92-95.
[23] 赵舒. 微电阻率成像测井资料在塔河油田缝洞型储层综合评价中的应用. 石油物探, 2005, 44(5):509-516. ZHAO S. The application of microresisitivity imaging log in the evaluation of carbonate fractured-vuggy reservoir in Tahe oilfield. Geophysical Prospecting for Petroleum, 2005, 44(5):509-516.
[24] 谢冰, 白利, 赵艾琳, 等. Sonic Scanner声波扫描测井在碳酸盐岩储层裂缝有效性评价中的应用:以四川盆地震旦系为例. 岩性油气藏, 2017, 29(4):117-123. XIE B, BAI L, ZHAO A L, et al. Application of sonic scanner logging to fracture effectiveness evaluation of carbonate reservoir:a case from Sinian in Sichuan Basin. Lithologic Reservoirs, 2017, 29(4):117-123.
[25] 贺洪举. 利用FMI成像测井分析井旁构造形态. 天然气工业, 1999, 19(3):94-95. HE H J. Using FMI image logging to analyze well patterns. Natural Gas Industry, 1999, 19(3):94-95.
[26] BROWN J, DAVIS B, GAWANKAR K, 等. 成像测井:获取井下直观图像. 国外测井技术, 2016, 37(4):54-66. BROWN J, DAVIS B, GAWANKAR K, et al. Imaging logging:Getting downhole visual images. Foreign Logging Techno-logy, 2016, 37(4):54-66.
[27] 杨绪海, 张晓春. 利用声成像测井数据实现岩石裂缝特征的自动识别. 中国海上油气, 2000, 14(6):429-431. YANG X H, ZHANG X C. Automatic identification of rock fractures using acoustic image logging. China Offshore Oil and Gas, 2000, 14(6):429-431.
[28] 陆敬安, 伍忠良, 关晓春, 等. 成像测井中的裂缝自动识别方法. 测井技术, 2004, 28(2):115-117. LU J A, WU Z L, GUAN X C, et al. Automatically extract fracture parameters from resistivity images by using Hough Transform. Well Logging Technology, 2004, 28(2):115-117.
[29] 李瑞磊, 冯晓辉, 李增玉, 等. 松辽盆地南部营城组火山岩裂缝的叠前地震识别. 成都理工大学学报(自然科学版), 2012, 39(6):611-616. LI R L, FENG X H, LI Z Y, et al. Recognition of per-stack earthquake of volcanic fractures of Yingcheng Formation in Songliao Basin, China. Journal of Chengdu University of Technology(Science & Technology Edition), 2012, 39(6):611-616.
[30] 傅海成, 邹长春, 肖承文, 等. 轮古地区古岩溶成像测井响应特征及其对岩溶发育的指示作用. 中国岩溶, 2015, 34(2):136-146. FU H C, ZOU C C, XIAO C W, et al. Characteristics of imaging logging response and indication of plaeokarst development in Lungu area. Carsologica Sinica, 2015, 34(2):136-146.
[31] 钟广法, 马在田. 利用高分辨率成像测井技术识别沉积构造. 同济大学学报(自然科学版), 2001, 29(5):576-580. ZHONG G F, MA Z T. Sedimentary structures identified from high-resolution borehole micro-resistivity image logs. Journal of Tongji University(Natural Science), 2001, 29(5):576-580.
[32] 王珂, 张惠良, 张荣虎, 等. 塔里木盆地克深2气田储层构造裂缝多方法综合评价. 石油学报, 2015, 36(6):673-687. WANG K, ZHANG H L, ZHANG R H, et al. Comprehensive assessment of reservoir structural fracture with multiple methods in Keshen-2 gas field, Tarim Basin. Acta Petrolei Sinica, 2015, 36(6):673-687.
[33] 王珂, 戴俊生, 王俊鹏, 等. 塔里木盆地克深2气田储层构造裂缝定量预测. 大地构造与成矿学, 2016, 40(6):1123-1135. WANG K, DAI J S, WANG J P, et al. Distribution of reservoir structural fractures and quantitative prediction of Keshen-2 Gas field, Tarim Basin. Geotectonica et Metallogenia, 2016, 40(6):1123-1135.
[1] 张治恒, 田继军, 韩长城, 张文文, 邓守伟, 孙国祥. 吉木萨尔凹陷芦草沟组储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 116-126.
[2] 郭秋麟, 吴晓智, 卫延召, 柳庄小雪, 刘继丰, 陈宁生. 准噶尔盆地腹部侏罗系油气运移路径模拟[J]. 岩性油气藏, 2021, 33(1): 37-45.
[3] 陈棡, 卞保力, 李啸, 刘刚, 龚德瑜, 曾德龙. 准噶尔盆地腹部中浅层油气输导体系及其控藏作用[J]. 岩性油气藏, 2021, 33(1): 46-56.
[4] 陈静, 陈军, 李卉, 努尔艾力·扎曼. 准噶尔盆地玛中地区二叠系—三叠系叠合成藏特征及主控因素[J]. 岩性油气藏, 2021, 33(1): 71-80.
[5] 余兴, 尤新才, 白雨, 李鹏, 朱涛. 玛湖凹陷南斜坡断裂识别及其对油气成藏的控制作用[J]. 岩性油气藏, 2021, 33(1): 81-89.
[6] 关新, 潘树新, 曲永强, 许多年, 张寒, 马永平, 王国栋, 陈雪珍. 准噶尔盆地沙湾凹陷滩坝砂的发现及油气勘探潜力[J]. 岩性油气藏, 2021, 33(1): 90-98.
[7] 杨凡凡, 姚宗全, 杨帆, 德勒恰提·加娜塔依, 张磊, 曹天儒. 准噶尔盆地玛北地区三叠系百口泉组岩石物理相[J]. 岩性油气藏, 2021, 33(1): 99-108.
[8] 李树博, 郭旭光, 郑孟林, 王泽胜, 刘新龙. 准噶尔盆地东部西泉地区石炭系火山岩岩性识别[J]. 岩性油气藏, 2021, 33(1): 258-266.
[9] 蒋中发, 丁修建, 王忠泉, 赵辛楣. 吉木萨尔凹陷二叠系芦草沟组烃源岩沉积古环境[J]. 岩性油气藏, 2020, 32(6): 109-119.
[10] 任杰. 碳酸盐岩裂缝性储层常规测井评价方法[J]. 岩性油气藏, 2020, 32(6): 129-137.
[11] 胡潇, 曲永强, 胡素云, 潘建国, 尹路, 许多年, 滕团余, 王斌. 玛湖凹陷斜坡区浅层油气地质条件及勘探潜力[J]. 岩性油气藏, 2020, 32(2): 67-77.
[12] 李佳思, 付磊, 张金龙, 陈静, 牛斌, 张顺存. 准噶尔盆地乌夏地区中上二叠统碎屑岩成岩作用及次生孔隙演化[J]. 岩性油气藏, 2019, 31(6): 54-66.
[13] 吴伟, 邵广辉, 桂鹏飞, 张虔, 魏浩元, 李国利, 任盼亮. 基于电成像资料的裂缝有效性评价和储集层品质分类——以鸭儿峡油田白垩系为例[J]. 岩性油气藏, 2019, 31(6): 102-108.
[14] 马永平, 王国栋, 张献文, 潘树新, 黄林军, 陈永波, 郭娟娟. 粗粒沉积次生孔隙发育模式——以准噶尔盆地西北缘二叠系夏子街组为例[J]. 岩性油气藏, 2019, 31(5): 34-43.
[15] 刘秀婵, 陈西泮, 刘伟, 王霞. 致密砂岩油藏动态渗吸驱油效果影响因素及应用[J]. 岩性油气藏, 2019, 31(5): 114-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .