岩性油气藏 ›› 2020, Vol. 32 ›› Issue (6): 120–128.doi: 10.12108/yxyqc.20200611

• 勘探技术 • 上一篇    下一篇

致密砂岩储层AVO正演模拟过程中的不确定性分析

张艳1, 高世臣2, 孟婉莹3, 成育红4, 蒋思思3   

  1. 1. 中国地质大学 (北京)地球物理与信息技术学院, 北京 100083;
    2. 中国地质大学 (北京)数理学院, 北京 100083;
    3. 中国石油长庆油田分公司 第三采气厂, 西安 710016;
    4. 中国石油长庆油田分公司 第五采气厂, 西安 710016
  • 收稿日期:2020-02-20 修回日期:2020-04-20 出版日期:2020-12-01 发布日期:2020-10-30
  • 作者简介:张艳(1987-),女,博士,主要从事石油地质与勘探方面的研究工作。地址:(100083)北京市海淀区学院路29号中国地质大学(北京)地球物理与信息技术学院。Email:zhyan_07@163.com。
  • 基金资助:
    国家科技重大专项“鄂尔多斯盆地大型岩性地层油气藏勘探开发示范工程”(编号:2016ZX05050)资助

Uncertainty analysis in AVO forward modeling for tight sandstone reservoirs

ZHANG Yan1, GAO Shichen2, MENG Wanying3, CHENG Yuhong4, JIANG Sisi3   

  1. 1. School of Geophysics and Information Technology, China University of Geosciences(Beijing), Beijing 100083, China;
    2. School of Science, China University of Geosciences(Beijing), Beijing 100083, China;
    3. No.3 Gas Production Plant, PetroChina Changqing Oilfield Company, Xi'an 710016, China;
    4. No.5 Gas Production Plant, PetroChina Changqing Oilfield Company, Xi'an 710016, China
  • Received:2020-02-20 Revised:2020-04-20 Online:2020-12-01 Published:2020-10-30

摘要: AVO正演模拟分析通常采用固定的岩石物理模型参数,而在实际勘探过程中不同岩石物理参数存在一定重叠,致使正演结果存在不确定性。以苏里格气田测井数据为基础,采用概率、信息熵等方法表征岩石物理参数的不确定性,基于典型的岩性反射界面,分析不同反射界面上下层介质纵波速度比、横波速度比、密度比对正演模拟结果的影响,通过马尔科夫链蒙特卡罗模拟方法(MCMC)开展不同岩性反射界面的反射系数和AVO属性响应特征的模拟,并采用信息熵估计AVO分析中的不确定性。结果表明:概率密度和信息熵在不同岩性的岩石物理参数上具有差异性,但是不同岩性之间存在交叉现象,增强了岩性识别结果的不确定性和多解性;AVO响应特征表明上下层介质岩石物理参数的变化和下层介质含气性的不同导致AVO反射系数具有不同的响应,且随着下层介质含气饱和度的增加,AVO属性表现“双负”特征,即负截距和负梯度。通过统计学手段解析AVO正演模拟过程中的不确定性,可以为储层预测提供有效的先验认识,从而降低致密砂岩气藏的开发风险。

关键词: 致密砂岩储层, AVO正演, 岩石物理模型, 不确定性, 概率密度函数, 信息熵, MCMC

Abstract: Traditional AVO forward modeling usually uses constant parameters to construct the petrophysics model,however,these parameters have uncertainties in the exploration process,resulting in great uncertainty for the process of forward modeling. The petrophysical model was firstly established based on the wireline logs and the tools of probability density function(PDF)and information entropy(IE)were used to characterize the uncertainty of petrophysical parameters. Then based on the typical reflection interfaces,the parameters of AVO forward modeling,including the ratio of compressional wave velocity,shear wave velocity and density between the media above and below of reflection interfaces,are analyzed to the influence of AVO forward modeling. Finally,the Markov Chain Monte Carlo(MCMC)simulation method was used to model the reflection characteristics and AVO attribute response of different lithological interfaces. The IE was then used to analyze the uncertainty in AVO analysis. The results show that the PDF and IE indicate that petrophysical parameters are different in different lithologies,but there is a certain overlap for each other,which results in uncertain and multi-solution for the identification of lithology using petrophysical parameters. The AVO response indicates that the changes of the petrophysical parameters of the upper and lower media and the differences of lithology of the lower media result in different responses of AVO reflection coefficient. The attribute of AVO intercept(P)and the AVO gradient(G) shift to the type Ⅲ,as the gas saturation increases. The study effectively evaluates the uncertainty in the AVO forward modeling through statistical methods,which can provide a priori understanding for reservoir prediction and is helpful for the risk assessment and decision-making optimization of reservoir prediction.

Key words: tight sandstone reservoirs, AVO forward modeling, petrophysical model, uncertainty, probability density function, information entropy, Markov Chain Monte Carlo

中图分类号: 

  • P631.4
[1] 杨华, 付金华.苏里格大型致密砂岩气藏形成条件及勘探技术.石油学报, 2012, 33(增刊1):27-36. YANG H, FU J H. Formation conditions and exploration technology of large-scale tight sandstone gas reservoir in Sulige. Acta Petrolei Sinica, 2012, 33(Suppl 1):27-36.
[2] 郭艳琴, 何子琼, 郭彬程, 等.苏里格气田东南部盒8段致密砂岩储层特征及评价.岩性油气藏, 2019, 31(5):1-11. GUO Y Q, HE Z Q, GUO B C, et al. Reservoir characteristics and evaluation of tight sandstone of He 8 member in southeastern Sulige Gas Field,Ordos Basin. Lithologic Reservoirs, 2019, 31(5):1-11.
[3] 潘仁芳, 赵玉华, 史松群.苏里格庙气田盒8段砂岩AVO正演模型研究.天然气工业, 2002, 22(5):7-10. PAN R F, ZHAO Y H, SHI S Q. Study on the AVO forward modeling of sandstone He-8,Permian,Shuligemiao gas field. Natural Gas Industry, 2002, 22(5):7-10.
[4] 王家华, 赵巍.基于统计岩石物理学的直接岩石物理反演.复杂油气藏, 2010, 3(4):6-8. WANG J H, ZHAO W. Direct rock physics inversion based on statistical rock physics. Complex Hydrocarbon Reservoirs, 2010, 3(4):6-8.
[5] MICHAEL R, STAN E D, LAURENS B. Uncertainty estimation for amplitude variation with offset(AVO)inversion. Geophysics, 2003, 68(5):1485-1496.
[6] RICHARD T H. Quantifying the uncertainty in an AVO interpretation. Geophysics, 2002, 67(1):117-125.
[7] 陈建江, 朱兴卉.AVO反演的不确定性分析. 地球物理学进展, 2009, 24(4):1461-1467. CHEN J J, ZHU X H. Uncertainty analysis for AVO inversion. Progress in Geophysics(in Chinese), 2009, 24(4):1461-1467.
[8] 何涛, 史謌, 邹长春, 等.砂岩储层AVO特征影响因素的不确定性研究.地球物理学报, 2011, 54(6):1584-1591. HE T, SHI G, ZOU C C, et al. The uncertainty analysis of the key factors that affect the AVO attributes in sandstone reservoir. Chinese Journal of Geophysics, 2011, 54(6):1584-1591.
[9] FERNANDEZ-MARTINEZ J L. Model reduction and uncertainty analysis in inverse problems. The Leading Edge, 2015, 34(9):1006-1016.
[10] BOSCH M, BERTORELLI G, ALVAREZ G, et al. Reservoir uncertainty description via petrophysical inversion of seismic data. The Leading Edge, 2015, 34(9):1018-1026.
[11] BALL V, LUIS T, CHRISTIAN S, et al. Uncertainty in inverted elastic properties resulting from uncertainty in the low-frequency model. The Leading Edge, 2015, 34(9):1028-1035.
[12] GORAIN S, SHALIVAHAN, PRABHAKAR T. Uncertainty in attribute-based inversion for quantification of the estimation of stock-tank oil initially in place in Kalol reservoir, Cambay Basin, India. The Leading Edge, 2015, 34(9):1058-1063.
[13] 路大金.随机过程及其应用.北京:清华大学出版社, 1986:1-20. LU D J. Stochastic processes with applications. Beijing:Tsinghua University Press, 1986:1-20.
[14] M ETROPOLIS N, ULAM S. The Monte Carlo method. Journal of the American Statistical Association, 1949, 44(247):335-341.
[15] 盛骤, 谢式千, 潘承毅.概率论与数理统计.北京:高等教育出版社, 1979:300-333. SHENG Z, XIE S Q, PAN C Y. Probability and statistics. Beijing:Higher Education Press, 1979:300-333.
[16] 高世臣, 张丹.多参数概率融合法在叠前地震储层预测中的应用:以苏里格气田苏194区块为例. 油气地质与采收率, 2015, 22(6):61-67. GAO S C, ZHANG D. Application of multi-parameter probability fusion method to pre-stack seismic reservoir prediction:a case study of Su194 block in Sulige Gas Field. Petroleum Geology and Recovery Efficiency, 2015, 22(6):61-67.
[17] 彭达, 肖富森, 冉崎, 等.基于KT模型流体替换的岩石物理参数反演方法.岩性油气藏, 2018, 30(5):82-90. PENG D, XIAO F S, RAN Q, et al. Inversion of rock physics parameters based on KT model fluid substitution. Lithologic Reservoirs, 2018, 30(5):82-90.
[18] 王秀姣, 黄家强, 姜仁, 等.AVO不同含气砂岩的AVO响应类型及其近似式误差分析. 岩性油气藏, 2017, 29(5):120-126. WANG X J, HUANG J Q, JIANG R, et al. AVO response of different types of gas-bearing sandstone and error analysis of approximate formulas. Lithologic Reservoirs, 2017, 29(5):120-126.
[19] WANG X C, PAN D Y. Application of AVO attribute inversion technology to gas hydrate identification in the Shenhu area, South China Sea. Marine and Petroleum Geology, 2017, 80:23-31.
[20] 郭强, 张宏兵, 曹呈浩, 等.Zoeppritz方程叠前多参数反演及密度敏感性分析.石油地球物理勘探, 2017, 52(6):105-112. GUO Q, ZHANG H B, CAO C H, et al. Density-sensitivity analysis about prestack multi-parameter inversion based on the exact Zoeppritz equation. Oil Geophysical Prospecting, 2017, 52(6):105-112.
[21] 周华建.基于叠前OVT域偏移的河道砂体预测方法.岩性油气藏, 2019, 31(4):112-120. ZHOU H J. Prediction method of channel sand body based on prestack migration in OVT domain. Lithologic Reservoirs, 2019, 31(4):112-120.
[22] 张艳, 张春雷, 高世臣.基于SOM和HSV染色技术的致密砂岩储层地震相分析.天然气地球科学, 2018, 29(2):259-267. ZHANG Y, ZHANG C L, GAO S C. Seismic facies analysis of tight sandstone reservoir based on SOM and HSV color technique. Natural Gas Geoscience, 2018, 29(2):259-267.
[23] SHUEY R T. A simplification of the Zoeppritz equations. Geophysics, 1985, 50(4):609-614.
[24] HOSSEINI-SHOAR B, JAVAHERIAN A, KESHAVARZ-FARAJKHAH N, et al. Reflectivity template, a quantitative interceptgradient AVO analysis to study gas hydrate resources:a case study of Iranian deep sea sediments. Marine and Petroleum Geology, 2014, 51:184-196.
[1] 龙盛芳, 王玉善, 李国良, 段传丽, 邵映明, 何咏梅, 陈凌云, 焦煦. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2): 59-69.
[2] 张鹏, 杨巧云, 范宜仁, 张云, 张海涛. 基于Xu-White模型的致密砂岩储层含气性评价[J]. 岩性油气藏, 2020, 32(6): 138-145.
[3] 赵万金, 高海燕, 闫国亮, 郭同翠. 基于最优化估算和贝叶斯统计的TOC预测技术[J]. 岩性油气藏, 2020, 32(1): 86-93.
[4] 柴 毓,王贵文. 致密砂岩储层岩石物理相分类与优质储层预测—— — 以川中安岳地区须二段储层为例[J]. 岩性油气藏, 2016, 28(3): 74-85.
[5] 钟光海,谢 冰,周 肖. 页岩气测井评价方法研究[J]. 岩性油气藏, 2015, 27(4): 96-102.
[6] 戴危艳,李少华,谯嘉翼,刘诗宇 . 储层不确定性建模研究进展[J]. 岩性油气藏, 2015, 27(4): 127-133.
[7] 于兴河,李顺利,杨志浩. 致密砂岩气储层的沉积-成岩成因机理探讨与热点问题[J]. 岩性油气藏, 2015, 27(1): 1-13.
[8] 唐群英,尹太举,路遥,蔡文,吴军,任强燕. 川东北普光地区须家河组裂缝特征描述[J]. 岩性油气藏, 2012, 24(2): 42-47.
[9] 薛艳霞,廖新武,赵春明,霍春亮,张如才. 基于随机建模技术的油田开发初期河流相储层不确定性分析方法———以渤海A油田为例[J]. 岩性油气藏, 2012, 24(1): 80-83.
[10] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[3] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[4] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[5] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[6] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[7] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .
[8] 王大兴,于波,张盟勃,宋琛. 地震叠前分析技术在子洲气田的研究与应用[J]. 岩性油气藏, 2008, 20(1): 95 -100 .
[9] 张学涛,王祝文,原镜海. 利用时频分析方法在阵列声波测井中区分油水层[J]. 岩性油气藏, 2008, 20(1): 101 -104 .
[10] 罗志立,张景廉,石兰亭. “塔里木—扬子古大陆”重建对无机成因油气的作用[J]. 岩性油气藏, 2008, 20(1): 124 -128 .