岩性油气藏 ›› 2015, Vol. 27 ›› Issue (4): 127–133.doi: 10.3969/j.issn.1673-8926.2015.04.019

• 论坛与综述 • 上一篇    

储层不确定性建模研究进展

戴危艳1,李少华2,谯嘉翼2,刘诗宇2   

  1. 1. 长江大学 油气资源与勘探技术教育部重点实验室,武汉 430100 ;2. 长江大学 地球科学学院,武汉 430100
  • 出版日期:2015-07-20 发布日期:2015-07-20
  • 第一作者:戴危艳( 1991- ),女,长江大学在读硕士研究生,研究方向为地质建模和油藏描述。 地址:( 430100 )湖北省武汉市蔡甸区大学路特 1 号长江大学地球科学学院。 E-mail : 879573435@qq.com
  • 基金资助:

    国家自然科学基金项目“点坝砂体内部非均质性的层次建模法”(编号: 41272136 )和非常规油气湖北省协同中心创新基金项目“页岩气储量计算的概率体积法”(编号: HBUOG-2014-14 )联合资助

Progress of reservoir uncertainty modeling

Dai Weiyan1, Li Shaohua2, Qiao Jiayi2, Liu Shiyu2   

  1.  1. Key Laboratory of Exploration Technologies for Oil and Gas Resources , Ministry of Education , Yangtze University ,Wuhan 430100 , China ; 2. School of geosciences , Yangtze University , Wuhan 430010 , China
  • Online:2015-07-20 Published:2015-07-20

摘要:

由于资料的不完备性及储层的非均质性,使得储层及其属性分布预测结果存在较大的不确定性。随机建模技术通过改变随机模拟路径并建立多个实现来刻画地质模型中的不确定性。储层不确定性建模是在随机建模的基础上发展起来的一项新技术,更加强调从数据获取、建模参数设置到模型响应各个阶段的不确定性表征与评价。 在大量文献调研的基础上,对储层建模过程中的不确定性来源进行了分类,对储层建模中的局部不确定性、空间不确定性和响应不确定性进行了系统的阐述,并提出了一些降低不确定性的方法。现阶段储层不确定性的研究主要集中在 2 个方面,即不确定性评价和如何降低不确定性,而针对不确定性建模方法的研究有待进一步加强。

关键词: 台内礁滩, 发育模式, 涧水沟剖面, 长兴组, 华蓥山地区

Abstract:

Due to the incomplete information and reservoir heterogeneity, it is unable to accurately determine the distribution of reservoir and its properties. Stochastic modeling technique can characterize the uncertainty of geologic model by generate multiple realizations through changing the stochastic simulation path. Reservoir uncertainty modeling is a new technology developed on the basis of the stochastic modeling, and it paid more emphasis on the characterization and evaluation of uncertainty that resulted from data acquisition, modeling parameter and response of models. Based on a large number of relevant references, this paper classified the sources of uncertainty in the process of reservoir modeling, expounded the local uncertainty, spatial uncertainty and response uncertainty in reservoir modeling, and put forward some methods to reduce the uncertainty. The research of the reservoir uncertainty mainly focused on the aspects of uncertainty evaluation and uncertainty reduction at present, and the research of uncertainty modeling methods should be strengthen.

 

Key words: i nt ra-pl at f orm reefand shoal , devel opm entm odel , Ji anshui gou prof i l e , Changxi ngForm at i on , H uayi ng-
shanarea

[ 1 ] 李少华,张昌民,彭裕林,等 . 储层不确定性评价[ J ] . 西安石油大学学报:自然科学版, 2004 , 19 ( 5 ): 16-19.

Li Shaohua , Zhang Changmin , Peng Yulin , et al. Assessment of reservoir uncertainty [ J ] . Journal of Xi ’ an Shiyou University : Natural Sciences Edition , 2004 , 19 ( 5 ): 16-19.

[ 2 ] 孙立春,高博禹,李敬功 . 储层地质建模参数不确定性研究方法探讨[ J ] . 中国海上油气, 2009 , 21 ( 1 ): 35-38.

Sun Lichun , Gao Boyu , Li Jinggong. A discussion on the method to study uncertainty of geologic modeling parameters [ J ] . China Offshore Oil and Gas , 2009 , 21 ( 1 ): 35-38.

[ 3 ] Oberkampf W L , de Land S M , Rutherford B M , et al. Error and uncertainty in modeling and simulation [ J ] . Reliability Engineering & System Safety , 2002 , 75 ( 3 ): 333-357.

[ 4 ] Bárdossy G , Fodor J. Evaluation of uncertainties and risks in geology : New mathematical approaches for their handling [ M ] . Germany : Springer , 2013.

[ 5 ] 霍春亮,刘松,古莉,等 . 一种定量评价储集层地质模型不确定性的方法[ J ] . 石油勘探与开发, 2007 , 34 ( 5 ): 574-579.

Huo Chunliang , Liu Song , Gu Li , et al. A quantitative method for assessing uncertainty of the reservoir geological model [ J ] .Petroleum Exploration and Development , 2007 , 34 ( 5 ): 574-579.

[ 6 ] Zafari M , Reynolds A C. Assessing the uncertainty in reservoir description and performance predictions with the ensemble Kalman filter [ J ] . SPE Journal , 2007 , 12 ( 3 ): 382-391.

[ 7 ] Smalley P C. Handling risk and uncertainty in petroleum exploration and asset management [ J ] . AAPG Bulletin , 2008 , 92 ( 10 ):1251-1261.

[ 8 ] Maschio C , de Carvalho C P V , Schiozer D J. A new methodology to reduce uncertainties in reservoir simulation models using observed data and sampling techniques [ J ] . Journal of Petroleum Science and Engineering , 2010 , 72 ( 1 ): 110-119.

[ 9 ] Armstrong M , Ndiaye A , Razanatsimba R , et al. A scenario reduction applied to geostatistical simulations [ J ] . Mathematical Geosciences , 2013 , 45( 2 ): 165-182.

[ 10 ] 薛艳霞,廖新武,赵春明,等 . 基于随机建模技术的油田开发初期河流相储层不确定性分析方法—— — 以渤海 A 油田为例[ J ] .岩性油气藏, 2012 , 24 ( 1 ): 80-83.

Xue Yanxia , Liao Xinwu , Zhao Chunming , et al. Uncertainty analysis of fluvial reservoir in oilfield early development period based on stochastic modeling : A case study from A oilfield in Bohai Bay[ J ] . Lithologic Reservoirs , 2012 , 24 ( 1 ): 80-83.

[ 11 ] 罗文生,孙立春,郑洪印,等 . 蒙特卡罗法在海上某油田储量评价中的应用[ J ] . 岩性油气藏, 2014 , 26 ( 1 ): 105-109.

Luo Wensheng , Sun Lichun , Zheng Hongyin , et al. Application of Monte-Carlo method to OOIP estimation of an offshore oilfield [ J ] .Lithologic Reservoirs , 2014 , 26 ( 1 ): 105-109.

[ 12 ] Srivastava R M. The visualization of spatial uncertainty [ J ] . AAPG Computer Applications in Geology , 1994 ( 3 ): 339-345.

[ 13 ] Kupfersberger H , Deutsch C V. Ranking stochastic realizations for improved aquifer response uncertainty assessment [ J ] . Journal of Hydrology , 1999 , 223 ( 1 ): 54-65.

[ 14 ] 张婷,徐守余 . 储层地质建模技术研究与展望[ J ] . 长春理工大学学报:高教版, 2009 , 4 ( 4 ): 191-192.

Zhang Ting , Xu Shouyu. Research and prospect of reservoir geologic modeling technology [ J ] . Journal of Changchun University of Science and Technology , 2009 , 4 ( 4 ): 191-192.

[ 15 ] 于兴河 . 油气储层表征与随机建模的发展历程及展望[ J ] . 地学前缘, 2008 , 15 ( 1 ): 1-15.

Yu Xinghe. A review of development course and prospect of petroleum reservoir characterization and stochastic modeling [ J ] . Earth Science Frontiers , 2008 , 15 ( 1 ): 1-15.

[ 16 ] 苏进昌,张岚,马新福 . 河流相储层开发初期地质建模[ J ] . 岩性油气藏, 2008 , 20 ( 3 ): 114-118.

Su Jinchang , Zhang Lan , Ma Xinfu. Geological modeling in initial stage of development of fluvial reservoir [ J ] . Lithologic reservoirs ,2008 , 20 ( 3 ): 114-118.

[ 17 ] McVay D A , Lee W J , Alvarado M G. Calibration improves uncertainty quantification in production forecasting [ J ] . Petroleum Geoscience , 2005 , 11 ( 3 ): 195-202.

[ 18 ] Floris F J T , Bush M D , Cuypers M , et al. Methods for quantifying the uncertainty of production forecasts : A comparative study [ J ] .Petroleum Geoscience , 2001 , 7 ( S1 ): S87-S96.

[ 19 ] Mezghani I Z , Manceau E , Feraille M. Uncertainty management :From geological scenarios to production scheme optimization [ J ] . JournalofPetroleumScienceandEngineering , 2004 , 44 ( 1 ): 11-25.

[ 20 ] Singh V , Hegazy M , Fontanelli L. Assessment of reservoir uncertainties for development evaluation and risk analysis [ J ] . The Leading Edge , 2009 , 28 ( 3 ): 272-282.

[ 21 ] 吴胜和,杨延强 . 地下储层表征的不确定性及科学思维方法[ J ] .地球科学与环境学报, 2012 , 34 ( 2 ): 72-80.

Wu Shenghe , Yang Yanqiang. The uncertainty and scientific thinking method of reservoir characterization [ J ] . Journal of Earth Science and Environment , 2012 , 34 ( 2 ): 72-80.

[ 22 ] Zee Ma Y , La Pointe P. Uncertainty Analysis and Reservoir Modeling [ M ] . American : AAPG , 2011.


[ 23 ] Goovaerts P. Geostatistical modeling of the spaces of local , spatial ,and response uncertainty for continuous petrophysical properties [ J ] . AAPG Computer Applications in Geology , 2006 ( 5 ): 59-79.

[ 24 ] Goovaerts P. AUTO-IK : A 2D indicator kriging program for the automated non-parametric modeling of local uncertainty in earth sciences [ J ] . Computers & geosciences , 2009 , 35 ( 6 ): 1255-1270.

[ 25 ] Goovaerts P. Impact of the simulation algorithm , magnitude of ergodic fluctuations and number of realizations on the spaces of uncertainty of flow properties [ J ] . Stochastic Environmental Research and Risk Assessment , 1999 ( 13 ): 161-182.

[ 26 ] Goovaerts P. Geostatistical modelling of uncertainty in soil science[ J ] . Geoderma , 2001 , 103 ( 1 ): 3-26.

[ 27 ] Groenen P J F , Jajuga K. Fuzzy clustering with squared Minkowski distances [ J ] . Fuzzy Sets and Systems , 2001 , 120 ( 2 ): 227-237.

[ 28 ] de Maesschalck R , Jouan-Rimbaud D , Massart D L. The mahalanobis distance [ J ] . Chemometrics and intelligent laboratory systems ,2000 , 50 ( 1 ): 1-18.

[ 29 ] Sim D G , Kwon O K , Park R H. Object matching algorithm using robust Hausdorff distance measures [ J ] . IEEE Trans. Image Process , 1999 , 8 ( 2 ): 425-429.

[ 30 ] Rote G. Computing the minimum Hausdorff distance between two point sets on a line under translation [ J ] . Information Process Letters , 1991 , 38 : 123-127.

[ 31 ] 贺玲,吴玲达,蔡益朝 . 高维空间中数据的相似性度量[ J ] . 数学的实践与认识, 2006 , 36 ( 9 ): 189-194.

He Ling , Wu Lingda , Cai Yichao. Similarity measurement of data in high dimensional spaces [ J ] . Journal of Mathematics in Practice and Theory , 2006 , 36 ( 9 ): 189-194.

[ 32 ] Carter R L , Morris R , Blashfield R K. On the partitioning of squared Euclidean distance and its applications in cluster analysis [ J ] .Psychometrika , 1989 , 54 ( 1 ): 9-23.

[ 33 ] Scheidt C , Caers J. Representing spatial uncertainty using distances and kernels [ J ] . Mathematical Geosciences , 2009 , 41 ( 4 ): 397-419.

[ 34 ] Goovaerts P. Geostatistical modelling of spatial uncertainty using p-field simulation with conditional probability fields [ J ] . International Journal of Geographical Information Science , 2002 , 16 ( 2 ):167-178.

[ 35 ] 吕栋雷,曹志耀,邓宝,等 . 利用方差分析法进行模型验证[ J ] .计算机仿真, 2006 , 23 ( 8 ): 46-48.

Lü Donglei , Cao Zhiyao , Deng Bao , et al. Application of variance analysis in model validation [ J ] . Computer Simulation , 2006 , 23 ( 8 ):46-48.

[ 36 ] 李少华,李强,李君 . 影响砂体连通体积因素的定量评价[ J ] . 天然气地球科学, 2014 , 25 ( 5 ): 643-648.

Li Shaohua , Li Qiang , Li Jun. Quantitative evaluation of the factors controlling the sand body connected volumes [ J ] . Natural Gas Geoscience , 2014 , 25 ( 5 ): 643-648.

[ 37 ] Loska K , Wiechula D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir [ J ] . Chemosphere , 2003 , 51( 8 ): 723-733.

[ 38 ] Gill D. Application of a statistical zonation method to reservoir evaluation and digitized-log analysis [ J ] . AAPG Bulletin , 1970 , 54 ( 5 ):719-729.

[ 39 ] 马功联 . 断块油藏特高含水期水驱开发因素敏感性分析[ J ] .海洋石油, 2005 , 25 ( 1 ): 46-49.

Ma Gonglian. Sensitivity analysis of waterflooding development factors in extra high water cut period of fault block reservoirs [ J ] .Offshore Oil , 2005 , 25 ( 1 ): 46-49.

[ 40 ] 赵静,赵泉 . 低渗透分支井井网产能预测及参数敏感性分析[ J ] .西南石油大学学报:自然科学版, 2010 , 32 ( 1 ): 112-116.

Zhao Jing , Zhao Quan. Deliverability for recast for multi-lateral well pattern and parameter sensitivity research in low-permeability reservoirs [ J ] . Journal of Southwest Petroleum University : science & Technology Edition , 2010 , 32 ( 1 ): 112-116.

[ 41 ] Oakley J E , O ’ Hagan A. Probabilistic sensitivity analysis of complex models : A Bayesian approach [ J ] . Journal of the Royal Statistical Society : Series B ( Statistical Methodology ), 2004 , 66 ( 3 ): 751 -769.

[ 42 ] Van Griensven A , Meixner T , Grunwald S , et al. A global sensitivity analysis tool for the parameters of multi-variable catchment models [ J ] . Journal of hydrology , 2006 , 324 ( 1 ): 10-23.

[ 43 ] 崇仁杰,于兴河,李婷婷 . 应用实验设计优选随机建模的储层模型[ J ] . 石油与天然气地质, 2012 , 33 ( 1 ): 94-100.

Chong Renjie , Yu Xinghe , Li Tingting. Selecting reservoir model built by stochastic modeling through experimental design [ J ] . Oil and Gas Geology , 2012 , 33 ( 1 ): 94-100.

[ 44 ] Caers J. Modeling Uncertainty in the Earth Sciences [ M ] . Chichester : Wiley Blackwell , 2011.

[ 45 ] Fenwick D , Scheidt C , Caers J. Quantifying asymmetric parameter interactions in sensitivity analysis : Application to reservoir modeling [ J ] . Mathematical Geosciences , 2014 , 46 ( 4 ): 493-511.

[1] 闫建平, 罗静超, 石学文, 钟光海, 郑马嘉, 黄毅, 唐洪明, 胡钦红. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 2022, 34(6): 60-71.
[2] 何文渊, 云建兵, 钟建华. 川东北二叠系长兴组碳酸盐岩云化成储机制[J]. 岩性油气藏, 2022, 34(5): 1-25.
[3] 阳宏, 刘成林, 王飞龙, 汤国民, 李国雄, 曾晓祥, 吴育平. 渤中凹陷东营组古沉积环境及烃源岩发育模式[J]. 岩性油气藏, 2021, 33(6): 81-92.
[4] 薛辉, 韩春元, 肖博雅, 王芳, 李玲. 蠡县斜坡高阳地区沙一下亚段浅水三角洲前缘沉积特征及模式[J]. 岩性油气藏, 2020, 32(4): 69-80.
[5] 马永平, 王国栋, 张献文, 潘树新, 黄林军, 陈永波, 郭娟娟. 粗粒沉积次生孔隙发育模式——以准噶尔盆地西北缘二叠系夏子街组为例[J]. 岩性油气藏, 2019, 31(5): 34-43.
[6] 刘雁婷. 川东北地区长兴组—飞仙关组储层特征[J]. 岩性油气藏, 2019, 31(1): 78-86.
[7] 王晓丽, 林畅松, 焦存礼, 黄理力. 塔里木盆地中—上寒武统白云岩储层类型及发育模式[J]. 岩性油气藏, 2018, 30(1): 63-74.
[8] 蔡全升, 胡明毅, 陈孝红, 胡忠贵. 小型断陷湖盆扇三角洲沉积特征与发育模式——以徐家围子断陷北部沙河子组为例[J]. 岩性油气藏, 2018, 30(1): 86-96.
[9] 章宇路,文华国,郑荣才,周 刚,张 兵,曹脊翔. 川东北铁山—双家坝地区长兴组白云岩成因[J]. 岩性油气藏, 2016, 28(5): 34-43.
[10] 倪 超,杨家静,陈 薇,林建,厚刚福,王 勇. 致密灰岩储层特征及发育模式——以四川盆地川中地区大安寨段为例[J]. 岩性油气藏, 2015, 27(6): 38-47.
[11] 胡忠贵,黎 荣,胡明毅,向小玲,秦 鹏,孙跃东. 川东华蓥山地区长兴组台内礁滩内部结构及发育模式[J]. 岩性油气藏, 2015, 27(5): 67-72.
[12] 纪友亮,王勇,李清山,胡斌. 苏北盆地高邮凹陷古近系戴南组层序发育模式及控制因素研究[J]. 岩性油气藏, 2014, 26(4): 9-15.
[13] 周刚,郑荣才,罗韧,刘划一,文华国. 环开江—梁平海槽长兴组生物礁类型及储层特征[J]. 岩性油气藏, 2013, 25(1): 81-87.
[14] 范玲玲,宋荣彩,金文辉,王勇,王姝. 鄂尔多斯盆地苏西X 井区盒8 段砂体发育模式研究[J]. 岩性油气藏, 2012, 24(4): 29-33.
[15] 吴其林,傅恒,李秀华,韩定坤,黄勇,段金宝. 川东北元坝地区长兴组岩石学特征及其意义[J]. 岩性油气藏, 2012, 24(2): 72-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .