岩性油气藏 ›› 2019, Vol. 31 ›› Issue (5): 34–43.doi: 10.12108/yxyqc.20190504

• 油气地质 • 上一篇    下一篇

粗粒沉积次生孔隙发育模式——以准噶尔盆地西北缘二叠系夏子街组为例

马永平1, 王国栋1, 张献文2, 潘树新1, 黄林军1, 陈永波1, 郭娟娟1   

  1. 1. 中国石油勘探开发研究院 西北分院, 兰州 730020;
    2. 甘肃煤田地质局 一四九队, 兰州 730020
  • 收稿日期:2019-03-29 修回日期:2019-06-30 出版日期:2019-09-21 发布日期:2019-09-16
  • 通讯作者: 张献文(1988-),女,硕士,工程师,主要从事沉积与储层方面的研究工作。Email:744568281@qq.com。 E-mail:744568281@qq.com
  • 作者简介:马永平(1983-),男,硕士,工程师,主要从事沉积与储层方面的研究工作。地址:(730020)甘肃省兰州市城关区雁儿湾路535号。Email:ma_yp@petrochina.com.cn
  • 基金资助:
    国家自然科学基金“陆相湖盆水下滑坡体的形成机制、识别标志及其石油地质意义”(编号:41872216)资助

Development model of secondary pores in coarse-grained deposits:a case study of Permian Xiazijie Formation in northwestern margin of Junggar Basin

MA Yongping1, WANG Guodong1, ZHANG Xianwen2, PAN Shuxin1, HUANG Linjun1, CHEN Yongbo1, GUO Juanjuan1   

  1. 1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China;
    2. No. 149 Team, Gansu Provincial Bureau of Coal Geology, Lanzhou 730020, China
  • Received:2019-03-29 Revised:2019-06-30 Online:2019-09-21 Published:2019-09-16

摘要: 近源扇三角洲粗粒砂砾岩体往往沉积规律复杂,具有块状构造、砾石大小混杂、粒径变化大、泥质杂基含量高、物性整体偏差且横向变化快等特征,导致对该类致密砂砾岩油气富集规律的区带评价及勘探目标的落实难度大。基于井-震一体化研究方法,通过三维地震、铸体薄片、岩石物性及地球化学等资料,对准噶尔盆地西北缘夏子街组沉积相划分、岩石学特征、物性规律、孔隙类型及成岩作用进行分析,认为夏子街组砂砾岩储层成分成熟度及结构成熟度均低,孔隙类型主要为次生溶蚀孔,保留少量残余粒间孔,物性整体较差。利用孔隙度演化定量分析方法,建立了准噶尔盆地西北缘夏子街组粗粒沉积孔隙演化模式。结果表明,准噶尔盆地西北缘夏子街组孔隙的演化先后经历了快速压实、早期胶结、有机酸溶蚀及晚期碳酸盐胶结等4个成岩阶段。在快速压实阶段,强烈的机械压实导致原始孔隙急剧减少,孔隙度由29.8%下降至15.1%;成岩早期形成的黏土、杂基及沸石类胶结物对储集空间造成破坏,孔隙度平均减小6.5%;有机酸溶蚀是对储层物性起关键改善的成岩作用,主要是对沸石类胶结物形成溶蚀,孔隙度由早期胶结后的8.6%增至12.1%,同时溶蚀作用与烃源岩的主要排烃期相吻合,有利于油气的有效充注;成岩晚期随埋深加大,压溶作用增强,硅质及碳酸盐胶结物相继沉淀,使颗粒支撑方式由点—线接触演变为线接触为主,储层物性再次变差,孔隙度损失约3.4%,一系列复杂的成岩作用下演变为现今的致密砂砾岩储层,孔隙度约8.7%。该研究成果可为研究区夏子街组储层预测提供参考。

关键词: 发育模式, 次生孔隙, 粗粒沉积, 夏子街组, 准噶尔盆地

Abstract: Coarse-grained glutenite bodies in near-source fan delta,generally with complex sedimentary regularities,are characterized by massive structure,different gravel sizes,large variations in grain size,high argillaceous matrix content,poor reservoir physical properties and rapid lateral changes,leading to difficulties in assessment and exploration of oil and gas enrichment regularities of tight glutenite. Based on well-seismic integrated research method,the data of three-dimensional seismic,casting thin sections,rock physical properties,geochemistry were used to analyze the sedimentary facies division,petrologic features,physical properties,pore types and diagenesis of Xiazijie Formation in the northwestern margin of Junggar Basin. The tight glutenite reservoir was dominated by lithic sandstone with low compositional and structural maturity and the pore type was mainly secondary dissolved pore,with a small amount of residual intergranular pores and poor physical properties. The evolution model of reservoir pores of Xiazijie Formation was established by quantitative analysis of porosity evolution. The results show that the pore evolution of Xiazijie Formation in northwestern margin of Junggar Basin has undergone four diagenetic stages:rapid compaction,early cementation,organic acid dissolution and late carbonate cementation. In the rapid compaction stage,strong mechanical compaction resulted in a sharp decrease in the original porosity from 29.8% to 15.1%. The clay,matrix and zeolite cements formed in the early diagenetic stage destroyed the reservoir space and the porosity decreased by 6.5% on average. Organic acid dissolution was the diagenesis that plays a key role in improving reservoir physical properties and was mainly for zeolite cements. Porosity increased from 8.6% to 12.1% after early cementation and reservoir properties were greatly improved. Additionally,the dissolution coincided with the main hydrocarbon expulsion period of source rocks,which was conducive to effective filling of oil and gas. In the late diagenetic stage,with the increase of burial depth and pressure dissolution and precipitation of siliceous and carbonate cements,grain-support mode changed from point-line contact to line contact, the reservoir physical properties deteriorated again and the porosity loss was about 3.4%. In the context of a series of complex diagenesis,the current tight glutenite reservoir was developed,with a porosity of about 8.7%. The results of this study can provide a reference for the reservoir prediction of Xiazijie Formation in the study area.

Key words: development model, secondary pores, coarse-grained sediments, Xiazijie Formation, Junggar Basin

中图分类号: 

  • TE122.2
[1] WENTWORTHC K. A scale of grade and class terms for clastic sediments. Journal of Geology,1922,30(5):377-392.
[2] 于兴河,李顺利,谭程鹏,等. 粗粒沉积及其储层表征的发展历程与热点问题探讨.古地理学报,2018,20(5):713-736. YU X H,LI S L,TAN C P,et al. Coarse-grained deposits and their reservoir characterizations:a look back to see forward and hot issues. Journal of Palaeogeography,2018,20(5):713-736.
[3] GILBERT G K. The topographic features of lake shores. Us Geol Surv Ann Rept,1885,34(873):269-270.
[4] BARRELL J. Criteria for the recognition of ancient delta deposits. GSA Bulletin,1912,23(1):377-446.
[5] HARMS J C. Brushy canyon formation,Texas:a deep-water density current deposit. GSA Bulletin,1974,85(11):1763-1784.
[6] WALKER R G. Generalized facies models for resedimented conglomerates of turbidite association. Geological Society of America Bulletin,1975,86(6):737-748.
[7] ROGERS J P. New reservoir model from an old oil field:Garfield conglomerate pool,Pawnee County,Kansas. AAPG Bulletin,2007,91(10):1349-1365.
[8] DOHERTY P D,SOREGHAN G S,CASTAGNA J P. Outcropbased reservoir characterization:A composite phylloid-algal mound,western Orogrande Basin(New Mexico). AAPG Bulletin,2002,86(5):779-795.
[9] 于兴河,李胜利,李顺利. 三角洲沉积的结构-成因分类与编图方法. 沉积学报,2013,31(5):782-797. YU X H,LI S L,LI S L. Texture-genetic classifications and mapping methods for deltaic deposits. Acta Sedimentologica Sinica,2013,31(5):782-797.
[10] 李亚哲,王力宝,郭华军,等. 基于地震波形指示反演的砂砾岩储层预测:以中拐-玛南地区上乌尔禾组为例. 岩性油气藏,2019,31(2):134-142. LI Y Z,WANG L B,GUO H J,et al. Prediction of glutenite reservoir based on seismic waveform indicative inversion:a case study of the upper Urho Formation in Zhongguai-Manan area. Lithologic Reservoirs,2019,31(2):134-142.
[11] 杨帆,曹正林,卫延召,等. 玛湖地区三叠系克拉玛依组浅水辫状河三角洲沉积特征. 岩性油气藏,2019,31(1):30-39. YANG F,CAO Z L,WEI Y Z,et al. Sedimentary characteristics of shallow-water braided delta of Karamay Formation in Mahu area. Lithologic Reservoirs,2019,31(1):30-39.
[12] 赵文智,何登发,宋岩,等.中国陆上主要含油气盆地石油地质基本特征.地质评论,1999,45(3):232-240. ZHAO W Z,HE D F,SONG Y,et al. Fundamental characteristics of petroleum geology of major on-land petroleum-bearing basins in China. Geological Review,1999,45(3):232-240.
[13] 蔚远江,李德生,胡素云,等.准噶尔盆地西北缘扇体形成演化与扇体油气藏勘探.地球学报,2007,28(1):62-71. YU Y J,LI D S,HU S Y,et al. Fans sedimentation and exploration direction of fan hydrocarbon reservoirs in foreland thrust belt of the northwestern Junggar Basin. Acta Geoscientica Sinica, 2007,28(1):62-71.
[14] 史基安,何周,丁超,等. 准噶尔盆地西北缘克百地区二叠系沉积特征及沉积模式. 沉积学报,2010,28(5):962-968. SHI J A,HE Z,DING C,et al. Sedimentary characteristics and model of Permian system in Ke-Bai area in the northwestern margin of Junggar Basin. Acta Sedimentologica Sinica,2010, 28(5):962-968.
[15] 张顺存,陈丽华,周新艳,等. 准噶尔盆地克百断裂下盘二叠系砂砾岩的沉积模式. 石油与天然气地质,2009,30(6):740-746. ZHANG S C,CHEN L H,ZHOU X Y,et al. Sedimentary model of the Permian conglomerate in the footwall of the Kebai Fault, the Junggar Basin. Oil & Gas Geology,2009,30(6):740-746.
[16] 祝彦贺,王英民,袁书坤,等. 准噶尔盆地西北缘沉积特征及油气成藏规律:以五、八区佳木河组为例. 石油勘探与开发, 2008,35(5):576-580. ZHU Y H,WANG Y M,YUAN S K,et al. Sedimentary characteristics and hydrocarbon accumulation rules in northwestern Junggar Basin:a case from Jiamuhe Formation of No. 5 and 8 area. Petroleum Exploration and Development,2008,35(5):576-580.
[17] 曾小明,张辉,邹明生,等. 基于岩石物理相的储集层分类评价:以北部湾盆地乌石凹陷东区始新统流沙港组三段Ⅱ油组为例. 古地理学报,2017,19(4):703-712. ZENG X M,ZHANG H,ZOU M S,et al. Reservoir classification and evaluation based on petrophysical facies:a case study on the pay set Ⅱ in member 3 of Eocene Liushagang Formation in eastern Wushi Sag,Beibu Wan Basin. Journal of Palaeogeography,2017,19(4):703-712.
[18] 郭沫贞,徐洋,寿建锋,等. 准噶尔盆地西北缘二叠系碎屑岩次生孔隙发育控制因素. 沉积学报,2017,35(2):330-342. GUO M Z,XU Y,SHOU J F,et al. Controlling factors of secondary pore development and petroleum exploration significance of Permian clastic rocks in northwest margin of Junggar Basin. Acta Sedimentologica Sinica,2017,35(2):330-342.
[19] 况晏,司马立强,瞿建华,等. 致密砂砾岩储层孔隙结构影响因素及定量评价:以玛湖凹陷玛131井区三叠系百口泉组为例. 岩性油气藏,2017,29(4):91-100. KUANG Y,SIMA L Q,QU J H,et al. Influencing factors and quantitative evaluation for pore structure of tight glutenite reservoir:a case of the Triassic Baikouquan Formation in Ma 131 well field,Mahu Sag. Lithologic Reservoirs,2017,29(4):91-100.
[20] 王永诗,王勇,郝雪峰,等. 深层复杂储集体优质储层形成机理与油气成藏:以济阳坳陷东营凹陷古近系为例. 石油与天然气地质,2016,37(4):490-498. WANG Y S,WANG Y,HAO X F,et al. Genetic mechanism and hydrocarbon accumulation of quality reservoir in deep and complicated reservoir rocks:a case from the Paleogene in Dongying Sag,Jiyang Depression. Oil & Gas Geology,2016,37(4):490-498.
[21] 李闽,王浩,陈猛.致密砂岩储层可动流体分布及影响因素研究:以吉木萨尔凹陷芦草沟组为例. 岩性油气藏,2018,30(1):140-149. LI M,WANG H,CHEN M. Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs:a case study of Lucaogou Formation in Jimsar Sag,NW China. Lithologic Reservoirs,2018,30(1):140-149.
[22] 杨晓萍,张宝民,陶士振. 四川盆地侏罗系沙溪庙组浊沸石特征及油气勘探意义. 石油勘探与开发,2005,32(3):37-40. YANG X P,ZHANG B M,TAO S Z. Laumonite and its significance for petroleum exploration in Jurassic Shaximiao reservoir,Sichuan Basin. Petroleum Exploration and Development, 2005,32(3):37-40.
[23] CHIPERA S J,GOFF F,GOFF C J,et al. Zeolitization of intracaldera sediments and rhyolitic rocks in the 1.25 Ma lake of Valles caldera,New Mexico,USA. Journal of Volcanology and Geothermal Research,2008,178(2):317-330.
[24] MARINER R H,SURDAM R C. Alkalinity and formation of zeolites in saline alkaline lakes. Science,1970,170(3961):977-980.
[25] 张世铭,张小军,郑联勇,等.酒西盆地老君庙构造白杨河组间泉子段储层孔隙结构特征. 岩性油气藏,2018,30(5):40-50. ZHANG S M,ZHANG X J,ZHENG L Y,et al. Reservoir pore structures of Jianquanzi member in Laojunmiao structure,Jiuxi Basin. Lithologic Reservoirs,2018,30(5):40-50.
[26] 曾溅辉,朱志强,吴琼,等. 烃源岩的有机酸生成及其影响因素的模拟实验研究. 沉积学报,2007,25(6):847-851. ZENG J H,ZHU Z Q,WU Q,et al. Experimental study on the generation of organic acids from source rocks and its effect factors. Acta Sedimentologica Sinica,2007,25(6):847-851.
[27] 王绪龙,高岗,杨海波,等. 准噶尔盆地西北缘五八开发区二叠系原油特征与成藏关系探讨.高校地质学报,2008,14(2):256-261. WANG X L,GAO G,YANG H B,et al. Research on relation between oil properties and petroleum pool formation of Per-mian in the 5 th & 8 th Districts,northwestern margin of Junggar Basin. Geological Journal of China Universities,2008,14(2):256-261.
[28] 王华超,韩登林,欧阳传湘,等. 库车坳陷北部阿合组致密砂岩储层特征及主控因素. 岩性油气藏,2019,31(2):115-123. WANG H C,HAN D L,OUYANG C X,et al. Characteristics and main controlling factors of tight sandstone reservoir of Ahe Formation in northern Kuqa Depression. Lithologic Reservoirs, 2019,31(2):115-123.
[29] 朱世发,朱筱敏,吴冬,等. 准噶尔盆地西北缘下二叠统油气储层中火山物质蚀变及控制因素.石油与天然气地质,2014, 35(1):77-85. ZHU S F,ZHU X M,WU D,et al. Alteration of volcanics and its controlling factors in the Lower Permian reservoirs at northwestern margin of Junggar Basin. Oil & Gas Geology,2014,35(1):77-85.
[30] 何周,史基安,唐勇,等. 准噶尔盆地西北缘二叠系碎屑岩储层成岩相与成岩演化研究. 沉积学报,2011,29(6):1069-1077. HE Z,SHI J A,TANG Y,et al. Characteristics of diagenesis and diagenetic facies of Permian clastic reservoir in northwest margin of Junggar Basin. Acta Sedimentologica Sinica,2011, 29(6):1069-1077.
[31] BEARD D C,WEYL P K. Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bulletin,1973,57(2):349-369.
[1] 郭秋麟, 吴晓智, 卫延召, 柳庄小雪, 刘继丰, 陈宁生. 准噶尔盆地腹部侏罗系油气运移路径模拟[J]. 岩性油气藏, 2021, 33(1): 37-45.
[2] 陈棡, 卞保力, 李啸, 刘刚, 龚德瑜, 曾德龙. 准噶尔盆地腹部中浅层油气输导体系及其控藏作用[J]. 岩性油气藏, 2021, 33(1): 46-56.
[3] 陈静, 陈军, 李卉, 努尔艾力·扎曼. 准噶尔盆地玛中地区二叠系—三叠系叠合成藏特征及主控因素[J]. 岩性油气藏, 2021, 33(1): 71-80.
[4] 余兴, 尤新才, 白雨, 李鹏, 朱涛. 玛湖凹陷南斜坡断裂识别及其对油气成藏的控制作用[J]. 岩性油气藏, 2021, 33(1): 81-89.
[5] 关新, 潘树新, 曲永强, 许多年, 张寒, 马永平, 王国栋, 陈雪珍. 准噶尔盆地沙湾凹陷滩坝砂的发现及油气勘探潜力[J]. 岩性油气藏, 2021, 33(1): 90-98.
[6] 杨凡凡, 姚宗全, 杨帆, 德勒恰提·加娜塔依, 张磊, 曹天儒. 准噶尔盆地玛北地区三叠系百口泉组岩石物理相[J]. 岩性油气藏, 2021, 33(1): 99-108.
[7] 李树博, 郭旭光, 郑孟林, 王泽胜, 刘新龙. 准噶尔盆地东部西泉地区石炭系火山岩岩性识别[J]. 岩性油气藏, 2021, 33(1): 258-266.
[8] 薛辉, 韩春元, 肖博雅, 王芳, 李玲. 蠡县斜坡高阳地区沙一下亚段浅水三角洲前缘沉积特征及模式[J]. 岩性油气藏, 2020, 32(4): 69-80.
[9] 胡潇, 曲永强, 胡素云, 潘建国, 尹路, 许多年, 滕团余, 王斌. 玛湖凹陷斜坡区浅层油气地质条件及勘探潜力[J]. 岩性油气藏, 2020, 32(2): 67-77.
[10] 李佳思, 付磊, 张金龙, 陈静, 牛斌, 张顺存. 准噶尔盆地乌夏地区中上二叠统碎屑岩成岩作用及次生孔隙演化[J]. 岩性油气藏, 2019, 31(6): 54-66.
[11] 刘冬冬, 杨东旭, 张子亚, 张晨, 罗群, 潘占昆, 黄治鑫. 基于常规测井和成像测井的致密储层裂缝识别方法——以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏, 2019, 31(3): 76-85.
[12] 李亚哲, 王力宝, 郭华军, 单祥, 邹志文, 窦洋. 基于地震波形指示反演的砂砾岩储层预测——以中拐-玛南地区上乌尔禾组为例[J]. 岩性油气藏, 2019, 31(2): 134-142.
[13] 冯有良, 胡素云, 李建忠, 曹正林, 吴卫安, 赵长义, 崔化娟, 袁苗. 准噶尔盆地西北缘同沉积构造坡折对层序建造和岩性油气藏富集带的控制[J]. 岩性油气藏, 2018, 30(4): 14-25.
[14] 靳军, 王剑, 杨召, 刘金, 季汉成, 贾海波, 张晓刚. 准噶尔盆地克-百断裂带石炭系内幕储层测井岩性识别[J]. 岩性油气藏, 2018, 30(2): 85-92.
[15] 王晓丽, 林畅松, 焦存礼, 黄理力. 塔里木盆地中—上寒武统白云岩储层类型及发育模式[J]. 岩性油气藏, 2018, 30(1): 63-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .