岩性油气藏 ›› 2022, Vol. 34 ›› Issue (4): 13–21.doi: 10.12108/yxyqc.20220402

• 地质勘探 • 上一篇    下一篇

渤海海域垦利6-1油田新近系复合河道砂体地震描述技术

周东红, 谭辉煌, 张生强   

  1. 中海石油(中国)有限公司 天津分公司 渤海石油研究院, 天津 300459
  • 收稿日期:2021-09-07 修回日期:2021-10-18 出版日期:2022-07-01 发布日期:2022-07-07
  • 第一作者:周东红(1968-),男,硕士,教授级高级工程师,主要从事地震资料解释研究及管理工作。地址:(300459)天津市滨海新区海川路2121号。Email:zhoudh@cnooc.com.cn
  • 通信作者: 张生强(1987-),男,博士,高级工程师,主要从事储层预测与油气检测方面的研究工作。Email:zhangshq21@qq.com。
  • 基金资助:
    中海石油(中国)有限公司“七年行动计划”科技重大专项“渤海油田上产4 000万吨新领域勘探关键技术”(编号:CNOOC-KJ135ZDXM 36 TJ 08 TJ)资助

Seismic description technologies of Neogene composite channel sand bodies in Kenli 6-1 oilfield,Bohai Sea

ZHOU Donghong, TAN Huihuang, ZHANG Shengqiang   

  1. Bohai Petroleum Institute, Tianjin Branch of CNOOC China Limited, Tianjin 300459, China
  • Received:2021-09-07 Revised:2021-10-18 Online:2022-07-01 Published:2022-07-07

摘要: 渤海油田浅层新近系复合河道砂体为重要储层。通过莱北地区垦利6-1亿吨级油田的井-震联合资料,开展道集优化处理,提高叠前道集保幅性,并进行了薄互层砂体地震精细描述及流体检测研究。研究结果表明:①低频约束的时频空间域AVO校正方法有效提升了研究区叠前道集的AVO保幅性。②三维砂地比约束的分频迭代随机反演技术实现了研究区新近系复合砂体叠置关系的精细刻画和储层厚度的准确计算。③三元约束流体检测技术可削弱非烃异常影响,增强地震流体异常与构造高低信息的匹配度,大幅提高了研究区地震流体检测的吻合率,从而提高了岩性油气藏勘探的成功率。

关键词: 复合河道砂体, AVO校正, 随机反演, 流体检测, 岩性油气藏, 新近系, 渤海油田

Abstract: The shallow Neogene composite channel sand bodies are important reservoirs in Bohai oilfield. Based on well logging-to-seismic integration data of Kenli 6-1 oilfield in Laibei area,gather optimization was carried out to improve the amplitude-preserved properties of pre-stack gathers,and fine seismic description and fluid detection of thin interbedded sand bodies were completed. The results show that:(1)The AVO correction method in time-frequency space domain with low-frequency constraints effectively improves the AVO amplitude-preserved properties of pre-stack gathers in the study area.(2)The iterative frequency-divided stochastic inversion technology constrained by three-dimensional sand to stratum ratio realizes fine characterization of the superposition relationship of Neogene composite sand bodies and the accurate calculation of reservoir thickness in the study area. (3)The fluid detection technology with three-parameter constraint can weaken the influence of non-hydrocarbon anomalies,enhance the matching degree between seismic fluid anomalies and tectonic high and low information,and greatly improve the coincidence rate of seismic fluid detection in the study area,so as to improve the success rate of lithologic reservoir exploration.

Key words: composite channel sand body, AVO correction, random inversion, fluid detection, lithologic reservoir, Neogene, Bohai oilfield

中图分类号: 

  • TE122.2
[1] 薛永安, 杨海风, 黄江波, 等.渤海海域浅层油气运移成藏理论技术创新与勘探突破[J].中国海上油气, 2020, 32(2):14-23. XUE Yong'an, YANG Haifeng, HUANG Jiangbo, et al.Technological and theoretical innovations in the shallow hydrocarbon migration and accumulation of the Bohai Sea and the exploration breakthroughs[J].China Offshore Oil and Gas, 2020, 32(2):14-23.
[2] 薛永安.渤海海域垦利6-1油田的发现与浅层勘探思路的重大转变[J].中国海上油气, 2021, 33(2):1-12. XUE Yong'an. Discovery of KL6-1 oilfield and great change of shallow strata exploration ideas in Bohai Sea[J]. China Offshore Oil and Gas, 2021, 33(2):1-12.
[3] 张志军, 周东红.数据驱动的"气云"区振幅补偿方法[J].石油地球物理勘探, 2016, 51(3):474-479. ZHANG Zhijun, ZHOU Donghong. Amplitude compensation in gas cloud area based on a data-driven algorithm[J]. Oil Geophysical Prospecting, 2016, 51(3):474-479.
[4] 周东红, 夏同星, 曹盛, 等.气云区地震成像关键处理技术:以渤海湾某油田为例[J].地球物理学进展, 2018, 33(6):2613-2618. ZHOU Donghong, XIA Tongxing, CAO Sheng, et al. Key imaging technologies of gas cloud area:A case study in Bohai Bay[J]. Progress in Geophysics, 2018, 33(6):2613-2618.
[5] 陈守田, 孟宪禄.薄互层储层预测方法[J].石油物探, 2004, 43(1):33-36. CHEN Shoutian, MENG Xianlu.A method for prediction of reservoirs of thin interbedded layers[J]. Geophysical Prospecting for Petroleum, 2004, 43(1):33-36.
[6] 王延光, 李皓, 李国发, 等.一种用于薄层和薄互层砂体厚度估算的复合地震属性[J]. 石油地球物理勘探, 2020, 55(1):153-160. WANG Yanguang, LI Hao, LI Guofa, et al.A composite seismic attribute used to estimate the sand thickness for thin bed and thin interbed[J].Oil Geophysical Prospecting, 2020, 55(1):153-160.
[7] 李国发, 王亚静, 熊金良, 等.薄互层地震切片解释中的几个问题:以一个三维地质模型为例[J].石油地球物理勘探, 2014, 49(2):388-393. LI Guofa, WANG Yajing, XIONG Jinliang, et al. Phenomena in inter-bed reservoir interpretation on seismic slices:An example of 3D geological model[J]. Oil Geophysical Prospecting, 2014, 49(2):388-393.
[8] BOSCH M, CARVAJAL C, RODRIGUES J, et al. Petrophysical seismic inversion conditioned to well-log data:Methods and application to a gas reservoir[J]. Geophysics, 2009, 74(2):1-15.
[9] 印兴耀, 崔维, 宗兆云, 等.基于弹性阻抗的储层物性参数预测方法[J].地球物理学报, 2014, 57(12):4132-4140. YIN Xingyao, CUI Wei, ZONG Zaoyun, et al. Petrophysical property inversion of reservoirs based on elastic impedance[J]. Chinese Journal of Geophysics, 2014, 57(12):4132-4140.
[10] 燕庚, 孔令洪.层序地层格架下的岩性圈闭识别与描述技术:哈萨克斯坦南图尔盖盆地实例[J].石油地球物理勘探, 2013, 48(增刊1):139-145. YAN Geng, KONG Linghong.Identification and characterization of lithological traps within sequence stratigraphic framework:A case study of South Turgay Basin, Kazakhstan[J]. Oil Geophysical Prospecting, 2013, 48(Suppl 1):139-145.
[11] 徐长贵, 杨海风, 王德英, 等.渤海海域莱北低凸起新近系大面积高丰度岩性油藏形成条件[J].石油勘探与开发, 2021, 48(1):12-25. XU Changgui, YANG Haifeng, WANG Deying, et al.Formation conditions of Neogene large-scale high-abundance lithologic reservoir in the Laibei low uplift, Bohai Sea, East China[J]. Petroleum Exploration and Development, 2021, 48(1):12-25.
[12] 杨海风, 牛成民, 柳永军, 等.渤海垦利6-1新近系大型岩性油藏勘探发现与关键技术[J].中国石油勘探, 2020, 25(3):24-32. YANG Haifeng, NIU Chengmin, LIU Yongjun, et al.Discovery and key exploration technology of KL6-1 large lithologic oil reservoir of Neogene in the Bohai Bay Basin[J]. China Petroleum Exploration, 2020, 25(3):24-32.
[13] DUAN Xinyi, TAN Huihuang, ZHANG Shengqiang, et al.The study and application of AVO analysis based on spectrum-reconstruction method[C]. SEG Technical Program Expanded Abstracts, 2018:650-654.
[14] ROSS Christopher P. Seismic offset balancing[J]. Geophysics, 1994, 59(1):93-101.
[15] 张艳, 高世臣, 孟婉莹, 等.致密砂岩储层AVO正演模拟过程中的不确定性分析[J].岩性油气藏, 2020, 32(6):120-128. ZHANG Yan, GAO Shichen, MENG Wanying, et al.Uncertainty analysis in AVO forward modeling for tight sandstone reservoirs[J]. Lithologic Reservoirs, 2020, 32(6):120-128.
[16] 张生强, 张志军, 郭军, 等.时频空间域低频约束AVO响应校正方法[J].石油地球物理勘探, 2021, 56(1):137-145. ZHANG Shengqiang, ZHANG Zhijun, GUO Jun, et al. AVO response correction constrained by low-frequency components in time-frequency-space domain[J]. Oil Geophysical Prospecting, 2021, 56(1):137-145.
[17] 王波, 夏同星, 刘垒, 等.薄互层高分辨率定量雕刻方法及应用:以渤海A油田为例[C].南京:SPG/SEG南京2020年国际地球物理会议, 2020:627-630. WANG Bo, XIA Tongxing, LIU Lei, et al. Thin interlayer highresolution quantitative engraving method and its application:A case study in Bohai oilfield[C]. Nanjing:SPG/SEG Nanjing 2020 International Geophysical Conference, 2020:627-630.
[18] 罗泽, 谢明英, 涂志勇, 等.一套针对高泥质疏松砂岩薄储层的识别技术:以珠江口盆地X油田为例[J].岩性油气藏, 2019, 31(6):95-101. LUO Ze, XIE Mingying, TU Zhiyong, et al.A set of recognition techniques for thin reservoirs with unconsolidated high-argillaceous sandstone:A case study from X oilfield in Pearl River Mouth Basin[J]. Lithologic Reservoirs, 2019, 31(6):95-101.
[19] 贺东阳, 李海山, 何润, 等.基于混合高斯先验分布的地质统计学反演[J].岩性油气藏, 2021, 33(3):113-119. HE Dongyang, LI Haishan, HE Run, et al. Geostatistical inversion based on Gaussian mixture prior distribution[J].Lithologic Reservoirs, 2021, 33(3):113-119.
[20] 王朋岩, 李耀华, 赵荣.叠后MCMC法岩性反演算法研究[J]. 地球物理学进展, 2015, 30(4):1918-1925. WANG Pengyan, LI Yaohua, ZHAO Rong. Algorithm research of post-stack MCMC lithology inversion method[J]. Progress in Geophysics, 2015, 30(4):1918-1925.
[21] 刘桓, 苏勤, 曾华会, 等.近地表Q补偿技术在川中地区致密气勘探中的应用[J].岩性油气藏, 2021, 33(3):104-112. LIU Huan, SU Qin, ZENG Huahui, et al. Application of near-surface Q compensation technology in tight gas exploration in central Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(3):104-112.
[1] 程焱, 王波, 张铜耀, 齐玉民, 杨纪磊, 郝鹏, 李阔, 王晓东. 渤中凹陷渤中A-2区新近系明化镇组岩性油气藏油气运移特征[J]. 岩性油气藏, 2024, 36(5): 46-55.
[2] 易珍丽, 石放, 尹太举, 李斌, 李猛, 刘柳, 王铸坤, 余烨. 塔里木盆地哈拉哈塘—哈得地区中生界物源转换及沉积充填响应[J]. 岩性油气藏, 2024, 36(5): 56-66.
[3] 张磊, 李莎, 罗波波, 吕伯强, 谢敏, 陈新平, 陈冬霞, 邓彩云. 东濮凹陷北部古近系沙三段超压岩性油气藏成藏机理[J]. 岩性油气藏, 2024, 36(4): 57-70.
[4] 夏明军, 邵新军, 杨桦, 王忠生, 李之宇, 张超前, 原瑞娥, 法贵方. 海外岩性油气藏储量分类分级方法[J]. 岩性油气藏, 2023, 35(6): 37-44.
[5] 李恒萱, 温志新, 宋成鹏, 刘祚冬, 季天愚, 沈一平, 耿珂. 塞内加尔盆地演化过程与岩性油气藏勘探前景[J]. 岩性油气藏, 2023, 35(6): 45-53.
[6] 王雪柯, 王震, 计智锋, 尹微, 姜仁, 侯珏, 张艺琼. 滨里海盆地东缘石炭系盐下碳酸盐岩油气藏成藏规律与勘探技术[J]. 岩性油气藏, 2023, 35(6): 54-62.
[7] 刘计国, 周鸿璞, 秦雁群, 邹荃, 郑凤云, 李早红, 肖高杰. 非洲Muglad盆地Fula凹陷白垩系AG组岩性油气藏勘探潜力[J]. 岩性油气藏, 2023, 35(6): 82-91.
[8] 洪国良, 王红军, 祝厚勤, 白振华, 王雯雯. 南苏门答腊盆地J区块中新统Gumai组岩性油气藏成藏条件及有利区带[J]. 岩性油气藏, 2023, 35(6): 138-146.
[9] 聂礼尚, 马静辉, 唐小飞, 杨智, 张婉金, 李鸿蕊. 准噶尔盆地东部帐篷沟地区中新生代构造事件及其油气地质意义[J]. 岩性油气藏, 2023, 35(5): 81-91.
[10] 徐中波, 汪利兵, 申春生, 陈铭阳, 甘立琴. 渤海蓬莱19-3油田新近系明下段曲流河储层构型表征[J]. 岩性油气藏, 2023, 35(5): 100-107.
[11] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新近系馆陶组储层敏感性[J]. 岩性油气藏, 2023, 35(2): 159-168.
[12] 杨楷乐, 何胜林, 杨朝强, 王猛, 张瑞雪, 任双坡, 赵晓博, 姚光庆. 高温-超压-高CO2背景下致密砂岩储层成岩作用特征——以莺歌海盆地LD10区新近系梅山组-黄流组为例[J]. 岩性油气藏, 2023, 35(1): 83-95.
[13] 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18.
[14] 任梦怡, 胡光义, 范廷恩, 范洪军. 秦皇岛32-6油田北区新近系明化镇组下段复合砂体构型及控制因素[J]. 岩性油气藏, 2022, 34(6): 141-151.
[15] 谢坤, 苏程, 刘长龙, 梅杰, 于海涛, 何欣, 卢祥国. Cr3+聚合物弱凝胶调驱剖面变化规律及改善方法[J]. 岩性油气藏, 2022, 34(6): 160-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .