岩性油气藏 ›› 2022, Vol. 34 ›› Issue (4): 13–21.doi: 10.12108/yxyqc.20220402

• 地质勘探 • 上一篇    下一篇

渤海海域垦利6-1油田新近系复合河道砂体地震描述技术

周东红, 谭辉煌, 张生强   

  1. 中海石油(中国)有限公司 天津分公司 渤海石油研究院, 天津 300459
  • 收稿日期:2021-09-07 修回日期:2021-10-18 出版日期:2022-07-01 发布日期:2022-07-07
  • 通讯作者: 张生强(1987-),男,博士,高级工程师,主要从事储层预测与油气检测方面的研究工作。Email:zhangshq21@qq.com。 E-mail:zhangshq21@qq.com
  • 作者简介:周东红(1968-),男,硕士,教授级高级工程师,主要从事地震资料解释研究及管理工作。地址:(300459)天津市滨海新区海川路2121号。Email:zhoudh@cnooc.com.cn
  • 基金资助:
    中海石油(中国)有限公司“七年行动计划”科技重大专项“渤海油田上产4 000万吨新领域勘探关键技术”(编号:CNOOC-KJ135ZDXM 36 TJ 08 TJ)资助

Seismic description technologies of Neogene composite channel sand bodies in Kenli 6-1 oilfield,Bohai Sea

ZHOU Donghong, TAN Huihuang, ZHANG Shengqiang   

  1. Bohai Petroleum Institute, Tianjin Branch of CNOOC China Limited, Tianjin 300459, China
  • Received:2021-09-07 Revised:2021-10-18 Online:2022-07-01 Published:2022-07-07

摘要: 渤海油田浅层新近系复合河道砂体为重要储层。通过莱北地区垦利6-1亿吨级油田的井-震联合资料,开展道集优化处理,提高叠前道集保幅性,并进行了薄互层砂体地震精细描述及流体检测研究。研究结果表明:①低频约束的时频空间域AVO校正方法有效提升了研究区叠前道集的AVO保幅性。②三维砂地比约束的分频迭代随机反演技术实现了研究区新近系复合砂体叠置关系的精细刻画和储层厚度的准确计算。③三元约束流体检测技术可削弱非烃异常影响,增强地震流体异常与构造高低信息的匹配度,大幅提高了研究区地震流体检测的吻合率,从而提高了岩性油气藏勘探的成功率。

关键词: 复合河道砂体, AVO校正, 随机反演, 流体检测, 岩性油气藏, 新近系, 渤海油田

Abstract: The shallow Neogene composite channel sand bodies are important reservoirs in Bohai oilfield. Based on well logging-to-seismic integration data of Kenli 6-1 oilfield in Laibei area,gather optimization was carried out to improve the amplitude-preserved properties of pre-stack gathers,and fine seismic description and fluid detection of thin interbedded sand bodies were completed. The results show that:(1)The AVO correction method in time-frequency space domain with low-frequency constraints effectively improves the AVO amplitude-preserved properties of pre-stack gathers in the study area.(2)The iterative frequency-divided stochastic inversion technology constrained by three-dimensional sand to stratum ratio realizes fine characterization of the superposition relationship of Neogene composite sand bodies and the accurate calculation of reservoir thickness in the study area. (3)The fluid detection technology with three-parameter constraint can weaken the influence of non-hydrocarbon anomalies,enhance the matching degree between seismic fluid anomalies and tectonic high and low information,and greatly improve the coincidence rate of seismic fluid detection in the study area,so as to improve the success rate of lithologic reservoir exploration.

Key words: composite channel sand body, AVO correction, random inversion, fluid detection, lithologic reservoir, Neogene, Bohai oilfield

中图分类号: 

  • TE122.2
[1] 薛永安, 杨海风, 黄江波, 等.渤海海域浅层油气运移成藏理论技术创新与勘探突破[J].中国海上油气, 2020, 32(2):14-23. XUE Yong'an, YANG Haifeng, HUANG Jiangbo, et al.Technological and theoretical innovations in the shallow hydrocarbon migration and accumulation of the Bohai Sea and the exploration breakthroughs[J].China Offshore Oil and Gas, 2020, 32(2):14-23.
[2] 薛永安.渤海海域垦利6-1油田的发现与浅层勘探思路的重大转变[J].中国海上油气, 2021, 33(2):1-12. XUE Yong'an. Discovery of KL6-1 oilfield and great change of shallow strata exploration ideas in Bohai Sea[J]. China Offshore Oil and Gas, 2021, 33(2):1-12.
[3] 张志军, 周东红.数据驱动的"气云"区振幅补偿方法[J].石油地球物理勘探, 2016, 51(3):474-479. ZHANG Zhijun, ZHOU Donghong. Amplitude compensation in gas cloud area based on a data-driven algorithm[J]. Oil Geophysical Prospecting, 2016, 51(3):474-479.
[4] 周东红, 夏同星, 曹盛, 等.气云区地震成像关键处理技术:以渤海湾某油田为例[J].地球物理学进展, 2018, 33(6):2613-2618. ZHOU Donghong, XIA Tongxing, CAO Sheng, et al. Key imaging technologies of gas cloud area:A case study in Bohai Bay[J]. Progress in Geophysics, 2018, 33(6):2613-2618.
[5] 陈守田, 孟宪禄.薄互层储层预测方法[J].石油物探, 2004, 43(1):33-36. CHEN Shoutian, MENG Xianlu.A method for prediction of reservoirs of thin interbedded layers[J]. Geophysical Prospecting for Petroleum, 2004, 43(1):33-36.
[6] 王延光, 李皓, 李国发, 等.一种用于薄层和薄互层砂体厚度估算的复合地震属性[J]. 石油地球物理勘探, 2020, 55(1):153-160. WANG Yanguang, LI Hao, LI Guofa, et al.A composite seismic attribute used to estimate the sand thickness for thin bed and thin interbed[J].Oil Geophysical Prospecting, 2020, 55(1):153-160.
[7] 李国发, 王亚静, 熊金良, 等.薄互层地震切片解释中的几个问题:以一个三维地质模型为例[J].石油地球物理勘探, 2014, 49(2):388-393. LI Guofa, WANG Yajing, XIONG Jinliang, et al. Phenomena in inter-bed reservoir interpretation on seismic slices:An example of 3D geological model[J]. Oil Geophysical Prospecting, 2014, 49(2):388-393.
[8] BOSCH M, CARVAJAL C, RODRIGUES J, et al. Petrophysical seismic inversion conditioned to well-log data:Methods and application to a gas reservoir[J]. Geophysics, 2009, 74(2):1-15.
[9] 印兴耀, 崔维, 宗兆云, 等.基于弹性阻抗的储层物性参数预测方法[J].地球物理学报, 2014, 57(12):4132-4140. YIN Xingyao, CUI Wei, ZONG Zaoyun, et al. Petrophysical property inversion of reservoirs based on elastic impedance[J]. Chinese Journal of Geophysics, 2014, 57(12):4132-4140.
[10] 燕庚, 孔令洪.层序地层格架下的岩性圈闭识别与描述技术:哈萨克斯坦南图尔盖盆地实例[J].石油地球物理勘探, 2013, 48(增刊1):139-145. YAN Geng, KONG Linghong.Identification and characterization of lithological traps within sequence stratigraphic framework:A case study of South Turgay Basin, Kazakhstan[J]. Oil Geophysical Prospecting, 2013, 48(Suppl 1):139-145.
[11] 徐长贵, 杨海风, 王德英, 等.渤海海域莱北低凸起新近系大面积高丰度岩性油藏形成条件[J].石油勘探与开发, 2021, 48(1):12-25. XU Changgui, YANG Haifeng, WANG Deying, et al.Formation conditions of Neogene large-scale high-abundance lithologic reservoir in the Laibei low uplift, Bohai Sea, East China[J]. Petroleum Exploration and Development, 2021, 48(1):12-25.
[12] 杨海风, 牛成民, 柳永军, 等.渤海垦利6-1新近系大型岩性油藏勘探发现与关键技术[J].中国石油勘探, 2020, 25(3):24-32. YANG Haifeng, NIU Chengmin, LIU Yongjun, et al.Discovery and key exploration technology of KL6-1 large lithologic oil reservoir of Neogene in the Bohai Bay Basin[J]. China Petroleum Exploration, 2020, 25(3):24-32.
[13] DUAN Xinyi, TAN Huihuang, ZHANG Shengqiang, et al.The study and application of AVO analysis based on spectrum-reconstruction method[C]. SEG Technical Program Expanded Abstracts, 2018:650-654.
[14] ROSS Christopher P. Seismic offset balancing[J]. Geophysics, 1994, 59(1):93-101.
[15] 张艳, 高世臣, 孟婉莹, 等.致密砂岩储层AVO正演模拟过程中的不确定性分析[J].岩性油气藏, 2020, 32(6):120-128. ZHANG Yan, GAO Shichen, MENG Wanying, et al.Uncertainty analysis in AVO forward modeling for tight sandstone reservoirs[J]. Lithologic Reservoirs, 2020, 32(6):120-128.
[16] 张生强, 张志军, 郭军, 等.时频空间域低频约束AVO响应校正方法[J].石油地球物理勘探, 2021, 56(1):137-145. ZHANG Shengqiang, ZHANG Zhijun, GUO Jun, et al. AVO response correction constrained by low-frequency components in time-frequency-space domain[J]. Oil Geophysical Prospecting, 2021, 56(1):137-145.
[17] 王波, 夏同星, 刘垒, 等.薄互层高分辨率定量雕刻方法及应用:以渤海A油田为例[C].南京:SPG/SEG南京2020年国际地球物理会议, 2020:627-630. WANG Bo, XIA Tongxing, LIU Lei, et al. Thin interlayer highresolution quantitative engraving method and its application:A case study in Bohai oilfield[C]. Nanjing:SPG/SEG Nanjing 2020 International Geophysical Conference, 2020:627-630.
[18] 罗泽, 谢明英, 涂志勇, 等.一套针对高泥质疏松砂岩薄储层的识别技术:以珠江口盆地X油田为例[J].岩性油气藏, 2019, 31(6):95-101. LUO Ze, XIE Mingying, TU Zhiyong, et al.A set of recognition techniques for thin reservoirs with unconsolidated high-argillaceous sandstone:A case study from X oilfield in Pearl River Mouth Basin[J]. Lithologic Reservoirs, 2019, 31(6):95-101.
[19] 贺东阳, 李海山, 何润, 等.基于混合高斯先验分布的地质统计学反演[J].岩性油气藏, 2021, 33(3):113-119. HE Dongyang, LI Haishan, HE Run, et al. Geostatistical inversion based on Gaussian mixture prior distribution[J].Lithologic Reservoirs, 2021, 33(3):113-119.
[20] 王朋岩, 李耀华, 赵荣.叠后MCMC法岩性反演算法研究[J]. 地球物理学进展, 2015, 30(4):1918-1925. WANG Pengyan, LI Yaohua, ZHAO Rong. Algorithm research of post-stack MCMC lithology inversion method[J]. Progress in Geophysics, 2015, 30(4):1918-1925.
[21] 刘桓, 苏勤, 曾华会, 等.近地表Q补偿技术在川中地区致密气勘探中的应用[J].岩性油气藏, 2021, 33(3):104-112. LIU Huan, SU Qin, ZENG Huahui, et al. Application of near-surface Q compensation technology in tight gas exploration in central Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(3):104-112.
[1] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新近系馆陶组储层敏感性[J]. 岩性油气藏, 2023, 35(2): 159-168.
[2] 杨楷乐, 何胜林, 杨朝强, 王猛, 张瑞雪, 任双坡, 赵晓博, 姚光庆. 高温-超压-高CO2背景下致密砂岩储层成岩作用特征——以莺歌海盆地LD10区新近系梅山组-黄流组为例[J]. 岩性油气藏, 2023, 35(1): 83-95.
[3] 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18.
[4] 任梦怡, 胡光义, 范廷恩, 范洪军. 秦皇岛32-6油田北区新近系明化镇组下段复合砂体构型及控制因素[J]. 岩性油气藏, 2022, 34(6): 141-151.
[5] 谢坤, 苏程, 刘长龙, 梅杰, 于海涛, 何欣, 卢祥国. Cr3+聚合物弱凝胶调驱剖面变化规律及改善方法[J]. 岩性油气藏, 2022, 34(6): 160-170.
[6] 马奎前, 刘东, 黄琴. 渤海旅大油田新近系稠油油藏水平井蒸汽驱油物理模拟实验[J]. 岩性油气藏, 2022, 34(5): 152-161.
[7] 王茂桢, 吴奎, 郭涛, 惠冠洲, 郝轶伟. 辽东凹陷东南缘古近系沙二段储层特征及控制因素[J]. 岩性油气藏, 2022, 34(4): 66-78.
[8] 王立锋, 宋瑞有, 陈殿远, 徐涛, 潘光超, 韩光明. 莺歌海盆地D13区新近系黄流组大型海底扇地震识别及含气性预测[J]. 岩性油气藏, 2022, 34(4): 42-52.
[9] 李晓辉, 杜晓峰, 官大勇, 王志萍, 王启明. 辽东湾坳陷东北部新近系馆陶组辫曲过渡型河流沉积特征[J]. 岩性油气藏, 2022, 34(3): 93-103.
[10] 牛成民, 杜晓峰, 王启明, 张参, 丁熠然. 渤海海域新生界大型岩性油气藏形成条件及勘探方向[J]. 岩性油气藏, 2022, 34(3): 1-14.
[11] 王乔, 宋立新, 韩亚杰, 赵会民, 刘颖. 辽河西部凹陷雷家地区古近系沙三段沉积体系及层序地层[J]. 岩性油气藏, 2021, 33(6): 102-113.
[12] 罗浩渝, 陈军, 章学岐, 孟祥霞, 赵凤全, 吴少军, 郭璇. 河控浅水三角洲前缘沉积特征及对岩性油藏的控制——以库车坳陷南斜坡巴西改组为例[J]. 岩性油气藏, 2021, 33(5): 70-80.
[13] 杨丽莎, 陈彬滔, 马轮, 史忠生, 薛罗, 王磊, 史江龙, 赵艳军. 陆相湖盆坳陷期源—汇系统的要素特征及耦合关系——以南苏丹Melut盆地北部坳陷新近系Jimidi组为例[J]. 岩性油气藏, 2021, 33(3): 27-38.
[14] 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84.
[15] 袁选俊, 周红英, 张志杰, 王子野, 成大伟, 郭浩, 张友焱, 董文彤. 坳陷湖盆大型浅水三角洲沉积特征与生长模式[J]. 岩性油气藏, 2021, 33(1): 1-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .