岩性油气藏 ›› 2021, Vol. 33 ›› Issue (3): 27–38.doi: 10.12108/yxyqc.20210303

• 油气地质 • 上一篇    下一篇

陆相湖盆坳陷期源—汇系统的要素特征及耦合关系——以南苏丹Melut盆地北部坳陷新近系Jimidi组为例

杨丽莎1,2, 陈彬滔1, 马轮1, 史忠生1, 薛罗1, 王磊1, 史江龙1, 赵艳军3   

  1. 1. 中国石油勘探开发研究院 西北分院, 兰州 730020;
    2. 中国石油天然气集团公司油藏描述重点实验室, 兰州 730020;
    3. 中油国际尼罗河公司, 苏丹 喀土穆 10687
  • 收稿日期:2021-02-03 修回日期:2021-03-19 发布日期:2021-06-03
  • 通讯作者: 陈彬滔(1985-),男,硕士,高级工程师,主要从事储层沉积学方面的研究工作。Email:tobychencugb@foxmail.com。 E-mail:tobychencugb@foxmail.com。
  • 作者简介:杨丽莎(1986—),女,硕士,工程师,主要从事储层沉积学方面的研究工作。地址:(730020)甘肃省兰州市城关区雁儿湾路535号。Email:yanglisa86@petrochina.com.cn
  • 基金资助:
    中国石油天然气集团公司重大科技项目“海外重点战略大区勘探技术研究与应用”(编号:2019D-4306)资助

Element feature and coupling model of source-to-sink system in depression lacustrine basin: A case study of Neogene Jimidi Formation in Melut Basin, South Sudan

YANG Lisha1,2, CHEN Bintao1, MA Lun1, SHI Zhongsheng1, XUE Luo1, WANG Lei1, SHI Jianglong1, ZHAO Yanjun3   

  1. 1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China;
    2. Key Laboratory of Reservoir Description, CNPC, Lanzhou 730020, China;
    3. CNPC International Nile Limited, Khartoum 10687, Sudan
  • Received:2021-02-03 Revised:2021-03-19 Published:2021-06-03

摘要: 源-汇系统要素特征与耦合关系分析作为当前沉积学领域的研究热点,已成为定量预测沉积体及油气储集体规模的重要思路与手段之一。为了研究Melut盆地新近系Jimidi组沉积期的源-汇系统要素及其耦合关系,开展了钻测井资料分析、高分辨连片三维地震资料和盆缘区二维地震资料解释、表征了各源-汇要素之间的相关性。结果表明:① Melut盆地北部坳陷基岩岩石类型为前寒武系千枚岩和花岗片麻岩,Jimidi组沉积时期发育3个一级汇水单元,存在V型、U型、W型下切谷型以及断槽型四种搬运通道类型。②研究区可划分出3个源-汇系统,其中西北部Kaka-Ruman源汇系统为典型的斜坡型源-汇耦合模式,汇水区发育面积约600 km2的河流-浅水三角洲沉积体系,东北部的Gandool-Wengi源-汇系统和西南部的Tean-Ruman West源-汇系统具有断裂坡折型源-汇系统的特征,盆内分别发育面积约400 km2和112 km2的扇三角洲沉积体系。③研究区源-汇系统要素定量分析显示,湖盆坳陷期盆内沉积物总量与源区汇水面积、地形高差、搬运通道截面积密切相关,汇水单元面积是决定沉积体系规模的首要影响因素,汇水单元面积大,则易于形成大规模沉积体系。该研究成果可预测Melut盆地Ruman地区Jimidi组的物源方向、沉积体系类型以及有利储集砂体展布,对下一步勘探部署具有指导作用。

关键词: 源—汇系统, 定量分析, 耦合关系, Jimidi组, 新近系, Melut盆地, 坳陷湖盆

Abstract: Characteristics of elements in source-to-sink system and their coupling relationships,as one of the most important method for quantitative prediction in sediments and oil/gas reservoirs,have become the research hotspots in sedimentology. In order to characterize the elements feature and coupling relationships of source-to-sink system during the deposition of Neogene Jimidi Formation in Melut Basin,well drilling and logging data analysis,and interpretation of high-resolution 3D seismic data and 2D seismic data in the basin margins were carried out,and the elements of the source-to-sink system for depression lacustrine basin were characterized. The results show that: (1)The basement in the north depression of Melut Basin was dominated by Precambrian metamorphic rocks(phyllite)and granitic gneiss. Three first-level catchments were developed in the study area during the deposition of Jimidi Formation,four types of transportation pathways,V-type,U-type,W-type and fault trough type,were found.(2)Three source-to-sink systems can be divided:Kaka-Ruman source-to-sink system in the northwest was the typical slope-type source-to-sink coupling model,where the river-shallow delta depositional system of 600 m2 was developed in the catchment;Gandool-Wengi source-to-sink system in the northeast and Tean-Ruman West source-to-sink system in the southwest were characterized by fault-slope-break,where fan deltas of 400 km2 and 112 km2 were developed respectively.(3)The quantitative analysis for elements of the source-to-sink systems in the study area showed that the total sediments inside the basin were closely relevant with area of catchments in the source area,topographic height difference and cross-sectional area of the transport channel during the depression stage in the lacustrine basins. The area of catchments was the primary influencing factor for the scales of depositional systems,and large catchments were favorable for the development of large depositional systems. Based on the results,types of depositional system and direction of sediments source for Jimidi Formation in Ruman area of Melut Basin have been confirmed and the distribution of favorable reservoir sandbodies have been predicted, which will guide the exploration deployment effectively.

Key words: source-to-sink system, quantitative analysis, coupling relationship, Jimidi Formation, Neogene, Melut Basin, depression lacustrine basin

中图分类号: 

  • TE121.3
[1] 林畅松, 夏庆龙, 施和生, 等. 地貌演化、源-汇过程与盆地分析. 地学前缘, 2015, 22(1):9-20. LIN C S, XIA Q L, SHI H S, et al. Geomorphological evolution, source to sink system and basin analysis. Earth Science Frontiers, 2015, 22(1):9-20.
[2] WALSH J P, WIBERG P L, AALTO R, et al. Source-to-sink research:Economy of the Earth's surface and its strata. EarthScience Reviews, 2016, 153:1-6.
[3] 徐长贵, 杜晓峰, 徐伟, 等. 沉积盆地"源-汇" 系统研究新进展. 石油与天然气地质, 2017, 38(1):1-11. XU C G, DU X F, XU W, et al. New advances of the "sourceto-sink" system research in sedimentary basin. Oil & Gas Geology, 2017, 38(1):1-11.
[4] 朱红涛, 徐长贵, 朱筱敏, 等. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 2017, 42(11):1851-1870. ZHU H T, XU C G, ZHU X M, et al. Advances of the source-tosink units and coupling model research in continental basin. Earth Science, 2017, 42(11):1851-1870.
[5] 操应长, 徐琦松, 王健. 沉积盆地"源-汇" 系统研究进展. 地学前缘, 2018, 25(4):116-131. CAO Y C, XU Q S, WANG J. Progress in "source to sink" system research. Earth Science Frontiers, 2018, 25(4):116-131.
[6] ANTHONY E J, JULIAN M. Source-to-sink sediment transfer, environmental engineering and hazard mitigation in the steep Var River catchment, French Riviera,southeastern France. Geomorphology, 1999, 31(1):337-354.
[7] ALLEN P A. From landscapes into geological history. Nature, 2008, 451(7176):274-276.
[8] SØMME T O, JACKSON C A-L, VAKSDAL M. Source-tosink analysis of ancient sedimentary systems using a subsurface case study from the Møre-Trøndelag area of southern Norway:Part1-Depositional setting and fan evolution. Basin Research, 2013, 25:489-511.
[9] BHATTACHARYA J P, COPELAND P, LAWTON F F, et al. Estimation of source area, river paleo-discharge, paleoslope, and sediment budgets of linked deep-time depositional systems and implications for hydrocarbon potential. Earth-Science Reviews, 2016, 153:77-110.
[10] 郑荣才, 李云, 戴朝成, 等.白云凹陷珠江组深水扇砂质碎屑流沉积学特征. 吉林大学学报(地球科学版), 2012, 42(6):1581-1589. ZHENG R C, LI Y, DAI C C, et al. Depositional features of sand debris flow of submarine fan in Zhujiang Formation, Baiyun Sag. Journal of Jilin University(Earth Science Edition), 2012, 42(6):1581-1589.
[11] 郑荣才, 郑哲, 高博禹, 等. 珠江口盆地白云凹陷珠江组海底扇深水重力流沉积特征. 岩性油气藏, 2013, 25(2):1-8. ZHENG R C, ZHENG Z, GAO B Y, et al. Sedimentary features of gravity flows in submarine fan of Zhujiang Formation in Baiyun Sag, Pearl River Mouth Basin. Lithologic Reservoirs, 2013, 25(2):1-8.
[12] 徐长贵. 陆相断陷盆地源-汇时空耦合控砂原理:基本思想、概念体系及控砂模式. 中国海上油气, 2013, 25(4):1-11. XU C G. Controlling and principle of source-sink coupling in time and space in continental rift basin:Basic idea, conceptual systems and controlling sand models. China Offshore Oil and Gas, 2013, 25(4):1-11.
[13] ZHU H T, YANG X H, LIU K Y, et al. Seismic-based sediment provenance analysis in continental lacustrine rift basins:An example from the Bohai Bay Basin, China. AAPG Bulletin, 2014, 98(10):1995-2018.
[14] 李顺利, 朱筱敏, 刘强虎, 等.沙垒田凸起古近纪源-汇系统中有利储层评价与预测.地球科学, 2017, 42(11):1994-2009. LI S L, ZHU X M, LIU Q H, et al. Evaluation and prediction of favorable reservoirs in source-to-sink systems of the Palaeogene, Shaleitian Uplift. Earth Science, 2017, 42(11):1994-2009.
[15] 刘强虎, 朱筱敏, 李顺利, 等. 沙垒田凸起西部断裂陡坡型源- 汇系统. 地球科学, 2017, 42(11):1883-1896. LIU Q H, ZHU X M, LI S L, et al. Source to sink system of the steep slope fault in the western Shaleitian Uplift. Earth Science, 2017, 42(11):1883-1896.
[16] BLUM M, MARTIN J, MILLIKEN K, et al. Paleovalley systems:Insights from quaternary analogs and experiments. EarthScience Reviews, 2013, 116:128-169.
[17] 陈彬滔, 于兴河, 王天奇, 等. 岱海湖盆沿坡流与顺坡流相互作用的沉积响应. 地球科学——中国地质大学学报, 2014, 39(4):399-410. CHEN B T, YU X H, WANG T Q, et al. Sedimentary response to interaction between downslope and along slope currents in Daihai Lake, North China. Earth Science-Journal of China University of Geosciences, 2014, 39(4):399-410.
[18] 朱秀, 朱红涛, 曾洪流, 等.云南洱海现代湖盆源-汇系统划分、特征及差异.地球科学, 2017, 42(11):2010-2024. ZHU X, ZHU H T, ZENG H L, et al. Subdivision, characteristics, and varieties of the source-to-sink systems of the modern lake Erhai Basin, Yunnan Province. Earth Science, 2017, 42(11):2010-2024.
[19] 陈彬滔, 史忠生, 薛罗, 等. 古潜山周缘滩坝沉积模式与岩性油藏勘探实践:以南苏丹Melut盆地Ruman地区Galhak组为例. 岩性油气藏, 2018, 30(6):37-44. CHEN B T, SHI Z S, XUE L, et al. Depositional models and lithologic reservoir exploration of sandy beach bar around buriedhill:A case from Galhak Formation in Ruman region of Melut Basin, South Sudan. Lithologic Reservoirs, 2018, 30(6):37-44.
[20] 陈彬滔, 史忠生, 马凤良, 等. 南苏丹Melut盆地Ruman凹陷白垩系层序地层级次与砂质滩坝的沉积响应. 古地理学报, 2018, 20(6):1013-1022. CHEN B T, SHI Z S, MA F L, et al. Cretaceous sequence stratigraphic hierarchies and the sedimentary response of sandy beachbar in Ruman Sag, Melut Basin, South Sudan. Journal of Palaeogeography(Chinese Edition), 2018, 20(6):1013-1022.
[21] 史忠生, 庞文珠, 陈彬滔, 等. 南苏丹Melut盆地下组合近源白垩系成藏模式与勘探潜力. 岩性油气藏, 2020, 32(5):23-33. SHI Z S, PANG W Z, CHEN B T, et al. Hydrocarbon accumulation models and exploration potential of near-source Cretaceous in the lower assemblage of Melut Basin, South Sudan. Lithologic Reservoirs, 2020, 32(5):23-33.
[22] 陈彬滔, 于兴河, 王磊, 等. 河流相沉积的河型转换特征与控制因素及其油气地质意义:以南苏丹Melut盆地Ruman地区坳陷期Jimidi组为例. 沉积学报,2021,39(2):424-433. CHEN B T, YU X H, WANG L, et al. Features and controlling factors of river pattern transition in fluvial deposition and its significance for petroleum geology:An insight from the Jimidi Formation in the Ruman area, Melut Basin, South Sudan. Acta Sedimentologica Sinica, 2021, 39(2):424-433.
[1] 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84.
[2] 袁选俊, 周红英, 张志杰, 王子野, 成大伟, 郭浩, 张友焱, 董文彤. 坳陷湖盆大型浅水三角洲沉积特征与生长模式[J]. 岩性油气藏, 2021, 33(1): 1-11.
[3] 史忠生, 庞文珠, 陈彬滔, 薛罗, 赵艳军, 马轮. 南苏丹Melut盆地下组合近源白垩系成藏模式与勘探潜力[J]. 岩性油气藏, 2020, 32(5): 23-33.
[4] 王航, 杨海风, 黄振, 白冰, 高雁飞. 基于可容纳空间变化的河流相演化新模式及其控藏作用——以莱州湾凹陷垦利A构造为例[J]. 岩性油气藏, 2020, 32(5): 73-83.
[5] 王德英, 于娅, 张藜, 史盼盼. 渤海海域石臼坨凸起大型岩性油气藏成藏关键要素[J]. 岩性油气藏, 2020, 32(1): 1-10.
[6] 陈彬滔, 史忠生, 薛罗, 马轮, 赵艳军, 何巍巍, 王磊, 史江龙. 古潜山周缘滩坝沉积模式与岩性油藏勘探实践——以南苏丹Melut盆地Ruman地区Galhak组为例[J]. 岩性油气藏, 2018, 30(6): 37-44.
[7] 王国林, 史忠生, 赵艳军, 陈彬滔, 薛罗. 南苏丹Melut盆地北部地区岩性油藏成藏条件及勘探启示[J]. 岩性油气藏, 2018, 30(4): 37-45.
[8] 万传治, 王 鹏, 薛建勤, 苏雪迎, 周 刚, 苟迎春 . 柴达木盆地柴西地区古近系—新近系致密油勘探潜力分析[J]. 岩性油气藏, 2015, 27(3): 26-31.
[9] 杨姣,刘涛,白耀文,李娜. 小波分析联合灰色系统理论在沉积微相研究中的应用———以丰富川油田长21 储层为例[J]. 岩性油气藏, 2012, 24(4): 75-79.
[10] 潘有军,徐赢,张中劲,吴美娥,谢军,文静. 牛圈湖油田水淹层测井评价方法[J]. 岩性油气藏, 2011, 23(2): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[3] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[4] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[5] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[6] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[7] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[8] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[9] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[10] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .