岩性油气藏 ›› 2021, Vol. 33 ›› Issue (3): 2738.doi: 10.12108/yxyqc.20210303
杨丽莎1,2, 陈彬滔1, 马轮1, 史忠生1, 薛罗1, 王磊1, 史江龙1, 赵艳军3
YANG Lisha1,2, CHEN Bintao1, MA Lun1, SHI Zhongsheng1, XUE Luo1, WANG Lei1, SHI Jianglong1, ZHAO Yanjun3
摘要: 源-汇系统要素特征与耦合关系分析作为当前沉积学领域的研究热点,已成为定量预测沉积体及油气储集体规模的重要思路与手段之一。为了研究Melut盆地新近系Jimidi组沉积期的源-汇系统要素及其耦合关系,开展了钻测井资料分析、高分辨连片三维地震资料和盆缘区二维地震资料解释、表征了各源-汇要素之间的相关性。结果表明:① Melut盆地北部坳陷基岩岩石类型为前寒武系千枚岩和花岗片麻岩,Jimidi组沉积时期发育3个一级汇水单元,存在V型、U型、W型下切谷型以及断槽型四种搬运通道类型。②研究区可划分出3个源-汇系统,其中西北部Kaka-Ruman源汇系统为典型的斜坡型源-汇耦合模式,汇水区发育面积约600 km2的河流-浅水三角洲沉积体系,东北部的Gandool-Wengi源-汇系统和西南部的Tean-Ruman West源-汇系统具有断裂坡折型源-汇系统的特征,盆内分别发育面积约400 km2和112 km2的扇三角洲沉积体系。③研究区源-汇系统要素定量分析显示,湖盆坳陷期盆内沉积物总量与源区汇水面积、地形高差、搬运通道截面积密切相关,汇水单元面积是决定沉积体系规模的首要影响因素,汇水单元面积大,则易于形成大规模沉积体系。该研究成果可预测Melut盆地Ruman地区Jimidi组的物源方向、沉积体系类型以及有利储集砂体展布,对下一步勘探部署具有指导作用。
中图分类号:
[1] 林畅松, 夏庆龙, 施和生, 等. 地貌演化、源-汇过程与盆地分析. 地学前缘, 2015, 22(1):9-20. LIN C S, XIA Q L, SHI H S, et al. Geomorphological evolution, source to sink system and basin analysis. Earth Science Frontiers, 2015, 22(1):9-20. [2] WALSH J P, WIBERG P L, AALTO R, et al. Source-to-sink research:Economy of the Earth's surface and its strata. EarthScience Reviews, 2016, 153:1-6. [3] 徐长贵, 杜晓峰, 徐伟, 等. 沉积盆地"源-汇" 系统研究新进展. 石油与天然气地质, 2017, 38(1):1-11. XU C G, DU X F, XU W, et al. New advances of the "sourceto-sink" system research in sedimentary basin. Oil & Gas Geology, 2017, 38(1):1-11. [4] 朱红涛, 徐长贵, 朱筱敏, 等. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 2017, 42(11):1851-1870. ZHU H T, XU C G, ZHU X M, et al. Advances of the source-tosink units and coupling model research in continental basin. Earth Science, 2017, 42(11):1851-1870. [5] 操应长, 徐琦松, 王健. 沉积盆地"源-汇" 系统研究进展. 地学前缘, 2018, 25(4):116-131. CAO Y C, XU Q S, WANG J. Progress in "source to sink" system research. Earth Science Frontiers, 2018, 25(4):116-131. [6] ANTHONY E J, JULIAN M. Source-to-sink sediment transfer, environmental engineering and hazard mitigation in the steep Var River catchment, French Riviera,southeastern France. Geomorphology, 1999, 31(1):337-354. [7] ALLEN P A. From landscapes into geological history. Nature, 2008, 451(7176):274-276. [8] SØMME T O, JACKSON C A-L, VAKSDAL M. Source-tosink analysis of ancient sedimentary systems using a subsurface case study from the Møre-Trøndelag area of southern Norway:Part1-Depositional setting and fan evolution. Basin Research, 2013, 25:489-511. [9] BHATTACHARYA J P, COPELAND P, LAWTON F F, et al. Estimation of source area, river paleo-discharge, paleoslope, and sediment budgets of linked deep-time depositional systems and implications for hydrocarbon potential. Earth-Science Reviews, 2016, 153:77-110. [10] 郑荣才, 李云, 戴朝成, 等.白云凹陷珠江组深水扇砂质碎屑流沉积学特征. 吉林大学学报(地球科学版), 2012, 42(6):1581-1589. ZHENG R C, LI Y, DAI C C, et al. Depositional features of sand debris flow of submarine fan in Zhujiang Formation, Baiyun Sag. Journal of Jilin University(Earth Science Edition), 2012, 42(6):1581-1589. [11] 郑荣才, 郑哲, 高博禹, 等. 珠江口盆地白云凹陷珠江组海底扇深水重力流沉积特征. 岩性油气藏, 2013, 25(2):1-8. ZHENG R C, ZHENG Z, GAO B Y, et al. Sedimentary features of gravity flows in submarine fan of Zhujiang Formation in Baiyun Sag, Pearl River Mouth Basin. Lithologic Reservoirs, 2013, 25(2):1-8. [12] 徐长贵. 陆相断陷盆地源-汇时空耦合控砂原理:基本思想、概念体系及控砂模式. 中国海上油气, 2013, 25(4):1-11. XU C G. Controlling and principle of source-sink coupling in time and space in continental rift basin:Basic idea, conceptual systems and controlling sand models. China Offshore Oil and Gas, 2013, 25(4):1-11. [13] ZHU H T, YANG X H, LIU K Y, et al. Seismic-based sediment provenance analysis in continental lacustrine rift basins:An example from the Bohai Bay Basin, China. AAPG Bulletin, 2014, 98(10):1995-2018. [14] 李顺利, 朱筱敏, 刘强虎, 等.沙垒田凸起古近纪源-汇系统中有利储层评价与预测.地球科学, 2017, 42(11):1994-2009. LI S L, ZHU X M, LIU Q H, et al. Evaluation and prediction of favorable reservoirs in source-to-sink systems of the Palaeogene, Shaleitian Uplift. Earth Science, 2017, 42(11):1994-2009. [15] 刘强虎, 朱筱敏, 李顺利, 等. 沙垒田凸起西部断裂陡坡型源- 汇系统. 地球科学, 2017, 42(11):1883-1896. LIU Q H, ZHU X M, LI S L, et al. Source to sink system of the steep slope fault in the western Shaleitian Uplift. Earth Science, 2017, 42(11):1883-1896. [16] BLUM M, MARTIN J, MILLIKEN K, et al. Paleovalley systems:Insights from quaternary analogs and experiments. EarthScience Reviews, 2013, 116:128-169. [17] 陈彬滔, 于兴河, 王天奇, 等. 岱海湖盆沿坡流与顺坡流相互作用的沉积响应. 地球科学——中国地质大学学报, 2014, 39(4):399-410. CHEN B T, YU X H, WANG T Q, et al. Sedimentary response to interaction between downslope and along slope currents in Daihai Lake, North China. Earth Science-Journal of China University of Geosciences, 2014, 39(4):399-410. [18] 朱秀, 朱红涛, 曾洪流, 等.云南洱海现代湖盆源-汇系统划分、特征及差异.地球科学, 2017, 42(11):2010-2024. ZHU X, ZHU H T, ZENG H L, et al. Subdivision, characteristics, and varieties of the source-to-sink systems of the modern lake Erhai Basin, Yunnan Province. Earth Science, 2017, 42(11):2010-2024. [19] 陈彬滔, 史忠生, 薛罗, 等. 古潜山周缘滩坝沉积模式与岩性油藏勘探实践:以南苏丹Melut盆地Ruman地区Galhak组为例. 岩性油气藏, 2018, 30(6):37-44. CHEN B T, SHI Z S, XUE L, et al. Depositional models and lithologic reservoir exploration of sandy beach bar around buriedhill:A case from Galhak Formation in Ruman region of Melut Basin, South Sudan. Lithologic Reservoirs, 2018, 30(6):37-44. [20] 陈彬滔, 史忠生, 马凤良, 等. 南苏丹Melut盆地Ruman凹陷白垩系层序地层级次与砂质滩坝的沉积响应. 古地理学报, 2018, 20(6):1013-1022. CHEN B T, SHI Z S, MA F L, et al. Cretaceous sequence stratigraphic hierarchies and the sedimentary response of sandy beachbar in Ruman Sag, Melut Basin, South Sudan. Journal of Palaeogeography(Chinese Edition), 2018, 20(6):1013-1022. [21] 史忠生, 庞文珠, 陈彬滔, 等. 南苏丹Melut盆地下组合近源白垩系成藏模式与勘探潜力. 岩性油气藏, 2020, 32(5):23-33. SHI Z S, PANG W Z, CHEN B T, et al. Hydrocarbon accumulation models and exploration potential of near-source Cretaceous in the lower assemblage of Melut Basin, South Sudan. Lithologic Reservoirs, 2020, 32(5):23-33. [22] 陈彬滔, 于兴河, 王磊, 等. 河流相沉积的河型转换特征与控制因素及其油气地质意义:以南苏丹Melut盆地Ruman地区坳陷期Jimidi组为例. 沉积学报,2021,39(2):424-433. CHEN B T, YU X H, WANG L, et al. Features and controlling factors of river pattern transition in fluvial deposition and its significance for petroleum geology:An insight from the Jimidi Formation in the Ruman area, Melut Basin, South Sudan. Acta Sedimentologica Sinica, 2021, 39(2):424-433. |
[1] | 马峰, 庞文珠, 赵文光, 张斌, 赵艳军, 薛罗, 郑茜, 陈彬滔. 南苏丹境内裂谷盆地源上构造-岩性油藏成藏主控因素与成藏模式[J]. 岩性油气藏, 2023, 35(6): 92-105. |
[2] | 徐中波, 汪利兵, 申春生, 陈铭阳, 甘立琴. 渤海蓬莱19-3油田新近系明下段曲流河储层构型表征[J]. 岩性油气藏, 2023, 35(5): 100-107. |
[3] | 薛罗, 史忠生, 马轮, 赵艳军, 岳世俊, 洪亮, 王磊, 雷明. 南苏丹Melut盆地北部地区中—新生界稠油成藏模式及勘探潜力[J]. 岩性油气藏, 2023, 35(3): 76-85. |
[4] | 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新近系馆陶组储层敏感性[J]. 岩性油气藏, 2023, 35(2): 159-168. |
[5] | 杨楷乐, 何胜林, 杨朝强, 王猛, 张瑞雪, 任双坡, 赵晓博, 姚光庆. 高温-超压-高CO2背景下致密砂岩储层成岩作用特征——以莺歌海盆地LD10区新近系梅山组-黄流组为例[J]. 岩性油气藏, 2023, 35(1): 83-95. |
[6] | 任梦怡, 胡光义, 范廷恩, 范洪军. 秦皇岛32-6油田北区新近系明化镇组下段复合砂体构型及控制因素[J]. 岩性油气藏, 2022, 34(6): 141-151. |
[7] | 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18. |
[8] | 马奎前, 刘东, 黄琴. 渤海旅大油田新近系稠油油藏水平井蒸汽驱油物理模拟实验[J]. 岩性油气藏, 2022, 34(5): 152-161. |
[9] | 周东红, 谭辉煌, 张生强. 渤海海域垦利6-1油田新近系复合河道砂体地震描述技术[J]. 岩性油气藏, 2022, 34(4): 13-21. |
[10] | 王立锋, 宋瑞有, 陈殿远, 徐涛, 潘光超, 韩光明. 莺歌海盆地D13区新近系黄流组大型海底扇地震识别及含气性预测[J]. 岩性油气藏, 2022, 34(4): 42-52. |
[11] | 李晓辉, 杜晓峰, 官大勇, 王志萍, 王启明. 辽东湾坳陷东北部新近系馆陶组辫曲过渡型河流沉积特征[J]. 岩性油气藏, 2022, 34(3): 93-103. |
[12] | 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84. |
[13] | 袁选俊, 周红英, 张志杰, 王子野, 成大伟, 郭浩, 张友焱, 董文彤. 坳陷湖盆大型浅水三角洲沉积特征与生长模式[J]. 岩性油气藏, 2021, 33(1): 1-11. |
[14] | 史忠生, 庞文珠, 陈彬滔, 薛罗, 赵艳军, 马轮. 南苏丹Melut盆地下组合近源白垩系成藏模式与勘探潜力[J]. 岩性油气藏, 2020, 32(5): 23-33. |
[15] | 王航, 杨海风, 黄振, 白冰, 高雁飞. 基于可容纳空间变化的河流相演化新模式及其控藏作用——以莱州湾凹陷垦利A构造为例[J]. 岩性油气藏, 2020, 32(5): 73-83. |
|