岩性油气藏 ›› 2021, Vol. 33 ›› Issue (3): 120–128.doi: 10.12108/yxyqc.20210312

• 勘探技术 • 上一篇    下一篇

基于LSTM循环神经网络的岩性识别方法

武中原1, 张欣2, 张春雷3, 王海英1   

  1. 1. 中国地质大学(北京)数理学院, 北京 100083;
    2. 北京师范大学 统计学院, 北京 100875;
    3. 北京中地润德石油科技有限公司, 北京 100083
  • 收稿日期:2020-07-22 修回日期:2020-09-06 发布日期:2021-06-03
  • 作者简介:武中原(1996—),男,中国地质大学(北京)在读硕士研究生,研究方向为统计学习、机器学习。地址:(100083)北京市海淀区学院路29号。Email:937031303@qq.com。
  • 基金资助:
    国家科技重大专项“鄂尔多斯盆地大型岩性地层油气藏勘探开发示范工程”(编号:2016ZX05050)资助

Lithology identification based on LSTM recurrent neural network

WU Zhongyuan1, ZHANG Xin2, ZHANG Chunlei3, WANG Haiying1   

  1. 1. School of Science, China University of Geosciences(Beijing), Beijing 100083, China;
    2. School of Statistics, Beijing Normal University, Beijing 100875, China;
    3. Beijing Zhongdirunde Petroleum Technology Co., Ltd., Beijing 100083, China
  • Received:2020-07-22 Revised:2020-09-06 Published:2021-06-03

摘要: 针对复杂碳酸盐岩储层岩石组分复杂、岩性多样,常规测井岩性识别方法受限等问题,提出利用长短期记忆神经网络(LSTM)提高岩性识别效果的方法,并结合实际数据进行验证和应用效果分析。考虑到常规机器学习方法在岩性识别中无法充分利用沉积岩石在深度域序列上的潜在信息,从而基于LSTM方法构建了能够提取和学习岩性沉积序列特征的岩性识别手段。以苏里格气田苏东地区下古生界碳酸盐岩储层为例,通过敏感性分析选取自然伽马、光电吸收截面指数、密度、声波时差、补偿中子和电阻率等6种测井参数,构建了基于LSTM的岩性识别模型。结果表明,与朴素贝叶斯,KNN,决策树,SVM和HMM等传统方法相比,LSTM的岩性识别准确率提升幅度介于1.40%~12.25%。高精度的LSTM岩性识别模型为复杂碳酸盐岩储层的表征和评价提供了数据基础。

关键词: 长短期记忆神经网络, 岩性识别, 碳酸盐岩储层, 机器学习

Abstract: A lithology recognition method by long-short-term memory neural network(LSTM)was proposed for complex carbonate reservoirs with complex composition and diverse lithology,to overcome obstacles troubling traditional identification,and effective results were showed with a case from gas field. Due to the inadequate ability of general machine learning methods in extracting the characteristics of sedimentary sequence,the LSTM method was introduced into the improvement for lithology identification. Taking the Lower Paleozoic carbonate reservoir in eastern block of Sulige gas field as an example,six sensitive parameters were selected to construct a lithology identification model based on LSTM,such as GRPe,DENRLLDAC and CNL. The results show that lithology identification accuracy based on LSTM increases by 1.40%-12.25% above traditional models(Naive Bayes,KNN,Decision Tree,SVM and HMM),and can provide more reliable support for the characterization and evaluation of complex carbonate reservoirs.

Key words: long-short-term memory neural network, lithology identification, carbonate reservoir, machine learning

中图分类号: 

  • P618.13
[1] 袁照威,段正军,张春雨,等.基于马尔科夫概率模型的碳酸盐岩储集层测井岩性解释.新疆石油地质,2017,38(1):96-102. YUAN Z W,DUAN Z J,ZHANG C Y,et al. Interpretation of logging lithology in carbonate reservoirs based on Markov Chain probability model. Xinjiang Petroleum Geology,2017,38(1):96-102.
[2] 成大伟,袁选俊,周川闽,等.测井岩性识别方法及应用:以鄂尔多斯盆地中西部长7油层组为例.中国石油勘探,2016,21(5):117-126. CHENG D W,YUAN X J,ZHOU C M,et al. Logging lithology identification methods and their application:A case study on Chang 7 member in central-western Ordos Basin,NW China. China Petroleum Exploration,2016,21(5):117-126.
[3] 王泽华,朱筱敏,孙中春,等.测井资料用于盆地中火成岩岩性识别及岩相划分:以准噶尔盆地为例.地学前缘,2015,22(3):254-268. WANG Z H,ZHU X M,SUN Z C,et al. Igneous lithology identification and lithofacies classification in the basin using logging data:Taking Junggar Basin as an example. Earth Science Frontiers,2015,22(3):254-268.
[4] 马峥,张春雷,高世臣.主成分分析与模糊识别在岩性识别中的应用.岩性油气藏,2017,29(5):127-133. MA Z,ZHANG C L,GAO S C. Lithology identification based on principal component analysis and fuzzy recognition. Lithologic Reservoirs,2017,29(5):127-133.
[5] 王振洲,张春雷,高世臣.利用决策树方法识别复杂碳酸盐岩岩性:以苏里格气田苏东41-33区块为例.油气地质与采收率,2017,24(6):25-33. WANG Z Z,ZHANG C L,GAO S C. Lithology identification of complex carbonate rocks based on decision tree method:An example from block Sudong 41-33 in Sulige gas field. Petroleum Geology and Recovery Efficiency,2017,24(6):25-33.
[6] 孙予舒,黄芸,梁婷,等.基于XGBoost算法的复杂碳酸盐岩岩性测井识别.岩性油气藏,2020,32(4):98-106. SUN Y S,HUANG Y,LIANG T,et al. Identification of complex carbonate lithology by logging based on XGBoost algorithm. Lithologic Reservoirs,2020,32(4):98-106.
[7] AL-ANAZI A,GATES I D. A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs. Engineering Geology,2010,114(3/4):267-277.
[8] 袁照威,陈龙,高世臣,等.基于马尔科夫-贝叶斯模拟算法的多地震属性沉积相建模方法:以苏里格气田苏10区块为例. 油气地质与采收率,2017,24(3):37-43. YUAN Z W,CHEN L,GAO S C,et al. A method of sedimentary facies modeling through integration of multi-seismic attributes based on Markov-Bayes model:An example from Su10 area in the north of Sulige gas field. Petroleum Geology and Recovery Efficiency,2017,24(3):37-43.
[9] 仲鸿儒,成育红,林孟雄,等.基于SOM和模糊识别的复杂碳酸盐岩岩性识别.岩性油气藏,2019,31(5):84-91. ZHONG H R,CHENG Y H,LIN M X,et al. Lithology identification of complex carbonate based on SOM and fuzzy recognition. Lithologic Reservoirs,2019,31(5):84-91.
[10] 刘跃杰,刘书强,马强,等. BP神经网络法在三塘湖盆地芦草沟组页岩岩相识别中的应用.岩性油气藏,2019,31(4):101-111. LIU Y J,LIU S Q,MA Q,et al. Application of BP neutral network method to identification of shale lithofacies of Lucaogou Formation in Santanghu Basin. Lithologic Reservoirs,2019,31(4):101-111.
[11] ELFEKI A,DEKKING M. A Markov Chain model for subsurface characterization:Theory and applications. Mathematical Geology,2001,33(5):569-589.
[12] LINDBERG D V,GRANA D. Petro-elastic log-facies classification using the expectation maximization algorithm and hidden markov models. Math Geosciences,2015,47(6):719-752.
[13] HOCHREITER S,SCHMIDHUBER J. Long short-term memory. Neural Computation,1997,9(8):1735-1780.
[14] 张东晓,陈云天,孟晋.基于循环神经网络的测井曲线生成方法. 石油勘探与开发,2018,45(4):598-607. ZHANG D X,CHEN Y T,MENG J. Synthetic well logs generation via recurrent neural networks. Petroleum Exploration and Development,2018,45(4):598-607.
[15] ZHANG J F,ZHU Y,ZHANG X P,et al. Developing a long short-term memory(LSTM)based model for predicting water table depth in agricultural areas. Journal of Hydrology,2018,6(561):918-929.
[16] BAO W,YUE J L,RAO Y L. A deep learning framework for financial time series using stacked autoencoders and long-short term memory. Plos One,2017,12(7):e0180944.
[17] SCHUSTER M,PALIWAL K K. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing,1997,45(11):2673-2681.
[18] BENGIO Y,SIMARD P,FRASCONI P. Learning long-term dependencies with Gradient Descent is difficult. IEEE Trans Neural Network,2002,5(2):157-166.
[19] GRAVES A,JAITLY N,Mohamed A R. Hybrid speech recognition with deep bidirectional LSTM. Automatic Speech Recognition and Understanding(ASRU),2013 IEEE Workshop on. IEEE,2013.
[20] 罗群,吴安彬,王井伶,等.中国北方页岩气成因类型、成气模式与勘探方向.岩性油气藏,2019,31(1):1-11. LUO Q,WU A B,WANG J L,et al. Genetic types,generation models,and exploration direction of shale gas in northern China. Lithologic Reservoirs,2019,31(1):1-11.
[21] 靳军,王剑,杨召,等. 准噶尔盆地克-百断裂带石炭系内幕储层测井岩性识别.岩性油气藏,2018,30(2):85-92. JIN J,WANG J,YANG Z,et al. Welling logging identification of Carboniferous volcanic inner buried-hill reservoirs in Ke-Bai fault zone in Junggar Basin. Lithologic Reservoirs,2018,30(2):85-92.
[1] 李树博, 郭旭光, 郑孟林, 王泽胜, 刘新龙. 准噶尔盆地东部西泉地区石炭系火山岩岩性识别[J]. 岩性油气藏, 2021, 33(1): 258-266.
[2] 孙予舒, 黄芸, 梁婷, 季汉成, 向鹏飞, 徐新蓉. 基于XGBoost算法的复杂碳酸盐岩岩性测井识别[J]. 岩性油气藏, 2020, 32(4): 98-106.
[3] 宋宣毅, 刘月田, 马晶, 王俊强, 孔祥明, 任兴南. 基于灰狼算法优化的支持向量机产能预测[J]. 岩性油气藏, 2020, 32(2): 134-140.
[4] 仲鸿儒, 成育红, 林孟雄, 高世臣, 仲婷婷. 基于SOM和模糊识别的复杂碳酸盐岩岩性识别[J]. 岩性油气藏, 2019, 31(5): 84-91.
[5] 马峥, 张春雷, 高世臣. 主成分分析与模糊识别在岩性识别中的应用[J]. 岩性油气藏, 2017, 29(5): 127-133.
[6] 张大权,邹妞妞,姜 杨,马崇尧,张顺存,杜社宽 . 火山岩岩性测井识别方法研究——以准噶尔盆地火山岩为例[J]. 岩性油气藏, 2015, 27(1): 108-114.
[7] 司马立强,李 清,杨 毅,陈 强 . 用 J 函数法求取碳酸盐岩储层饱和度方法探讨[J]. 岩性油气藏, 2014, 26(6): 106-110.
[8] 石战战,庞溯,唐湘蓉,贺振华. 基于匹配追踪算法的碳酸盐岩储层低频伴影识别方法研究[J]. 岩性油气藏, 2014, 26(3): 114-118.
[9] 王庆如,李敬功. 碳酸盐岩气藏储量参数测井评价方法[J]. 岩性油气藏, 2013, 25(6): 98-102.
[10] 韩长城,林承焰,马存飞. 地震多属性优选技术在碳酸盐岩缝洞型储层预测中的应用[J]. 岩性油气藏, 2013, 25(6): 67-70.
[11] 尚玲,谢亮,姚卫江,党玉芳,梁则亮. 准噶尔盆地中拐凸起石炭系火山岩岩性测井识别及应用[J]. 岩性油气藏, 2013, 25(2): 65-69.
[12] 范昱,陈洪德,林良彪,朱志军,隆轲,淡永. 黔南独山地区上石炭统大埔组碳酸盐岩储层特征研究[J]. 岩性油气藏, 2010, 22(Z1): 37-43.
[13] 孙勤华,刘晓梅,刘建新,张继娟. 利用波形分析技术半定量预测塔中碳酸盐岩储层[J]. 岩性油气藏, 2010, 22(1): 101-103.
[14] 陈嵘,高楚桥,金云智. 交会图技术在识别三塘湖盆地火成岩岩性中的应用[J]. 岩性油气藏, 2009, 21(3): 94-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[3] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[4] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[5] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[6] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[7] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[8] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[9] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[10] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .