岩性油气藏 ›› 2015, Vol. 27 ›› Issue (4): 47–52.doi: 10.3969/j.issn.1673-8926.2015.04.007

• 油气地质 • 上一篇    下一篇

川南—黔北地区下古生界页岩孔隙发育特征

杨 巍1,2,陈国俊1,胡士骏1,3,吕成福1,徐 勇1,3,杨 爽1,3   

  1. 1. 甘肃省油气资源研究重点实验室 / 中国科学院油气资源研究重点实验室,兰州 730000 ;2. 中国石油勘探开发研究院 西北分院,兰州 730020 ; 3. 中国科学院大学,北京 100049
  • 出版日期:2015-07-20 发布日期:2015-07-20
  • 第一作者:杨巍( 1985- ),女,中国科学院兰州油气资源研究中心在读博士研究生,研究方向为油气储层地质学。 地址:( 730000 )甘肃省兰州市城关区东岗西路 382 号。 E-mail : yangwei052@126.com
  • 基金资助:

    国家自然科学基金项目“鄂尔多斯盆地三叠系陆相页岩微孔隙特征与天然气赋存方式研究”(编号: 41272144 )、中国科学院战略性先导科技专项( B 类)“页岩气勘探开发基础理论与关键技术”(编号: XDB10010300 )及国家自然科学基金青年基金项目“四川盆地下古生界海相页岩微孔隙特征及形成机制研究”(编号: 41402130 )联合资助

Pore characteristics of shale of Lower Paleozoic in southern Sichuan-northern Guizhou

Yang Wei12,Chen Guojun1, Hu Shijun13, Lu Chengfu1, Xu Yong13, Yang Shuang13   

  1. 1. Key Laboratory of Petroleum Resources , Gansu Province/Key Laboratory of Petroleum Resources Research , Institute of Geology and Geophysics , Chinese Academy of Sciences , Lanzhou 730000 , China ; 2. PetroChina Research Institute of Petroleum Exploration & Development-Northwest , Lanzhou 730020 , China ; 3. University of Chinese Academy of Sciences , Beijing 100049 , China
  • Online:2015-07-20 Published:2015-07-20

摘要:

采用场发射扫描电镜成像方法对川南-黔北地区下古生界筇竹寺组、五峰组-龙马溪组富有机质页岩的微观孔隙类型、孔隙大小、孔隙形态与分布特征及微裂缝发育特征进行了研究。 结果表明:按形成方式的不同,可将孔隙划分为粒间孔、有机质孔、溶蚀孔和微裂缝 4 种主要类型;有机质孔发育广泛,对孔隙总体积贡献较大,有利于储层中吸附气的赋存;溶蚀孔零星分布,但孔径可达微米级,对孔隙总体积贡献较大;粒间孔发育相对较少,对孔隙总体积贡献相对较小;页岩中发育的微裂缝,可有效连通其他类型的孔隙,有利于页岩气的储存和渗流。对研究区样品矿物成分的分析表明,其矿物成分以石英、长石、碳酸盐矿物和黏土矿物为主,脆性矿物含量相对较高,平均体积分数为 54.9%,有利于对页岩储层的压裂改造。

关键词: 非均质性, 随机模拟, 储层地质模型, 不确定性

Abstract:

Pore types, size, morphology, distribution and fracture feat ures by field emission scanning electron microscope imaging were studied on shale samples of the Lower Paleozoic Niutitang Formation, Wufeng FormationLongmaxi Formation in the southern Sichuan-northern Guizhou. The results show that there are four main pore types developed in shale, including: intergranular pores, organic-matter pores, dissolved pores and microfracture. Organicmatter pores developed well in shale, which is favor of storing adsorbing-gas. Dissolved pores distributed sporadically, but the cumulative pore volume is much larger with wider pore diameters which are almost macropores and even reach to micrometer-scale. Intergranular pores developed relatively less, with little contribution to pore volume. Microfractures developed in shale can connect other types of pores, which is beneficial to shale gas store and flow. Additionally, the major components of shale are composed of quartz, feldspar, carbonate and clay minerals. The brittle minerals content   with an average of 54.9% is conducive to the formation fracturing and exploration.

Key words: heterogeneity, stochastic simulation, reservoir geologic model, uncertainty

[ 1 ] Schettler J P D , Parmely C R , Juniata C. Contributions to total storage capacity in Devonian shales [ R ] . SPE 23422 , 1991.

[ 2 ] Loucks R G , Reed R M , Ruppel S C , et al. Morphology , genesis , and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale [ J ] . Journal of Sedimentary Research ,2009 , 79 ( 9 ): 848-861.


[ 3 ] Schieber J. Common themes in the formation and preservation of intrinsic porosity in shales and mudstones-illuminated with examples across the phanerozoic [ R ] . SPE 132370 , 2010.

[ 4 ] 邹才能,朱如凯,白斌,等 . 中国油气储层中纳米孔首次发现及其科学价值[ J ] . 岩石学报, 2011 , 27 ( 6 ): 1857-1864.

Zou Caineng , Zhu Rukai , Bai Bin , et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[ J ] . Acta Petrologica Sinica , 27( 6 ): 1857-1864.

[ 5 ] 董大忠,程克明,王玉满,等 . 中国上扬子区下古生界页岩气形成条件及特征[ J ] . 石油与天然气地质, 2010 , 31 ( 3 ): 288-299.

Dong Dazhong , Cheng Keming , Wang Yuman , et al. Forming conditions and characteristics of shale gas in the Lower Paleozoic of  the Upper Yangtze region, China [ J ] . Oil & Gas Geology , 2010 , 31 ( 3 ):288-299.

[ 6 ] 胡琳,朱炎铭,陈尚斌,等 . 中上扬子地区下寒武统筇竹寺组页岩气资源潜力分析[ J ] . 煤炭学报, 2012 , 37 ( 11 ): 1871-1877.

Hu Lin , Zhu Yanming , Chen Shangbin , et al. Resource potential analysis of shale gas in Lower Cambrian Qiongzhusi Formation in Middle &Upper Yangtze region [ J ] . Journal of China Coal Society ,2012 , 37 ( 11 ): 1871-1877.

[ 7 ] 张春明,张维生,郭英海,等 . 川东南—黔北地区龙马溪组沉积环境及对烃源岩的影响[ J ] . 地学前缘, 2012 , 19 ( 1 ): 136-145.

ZhangChunming , Zhang Weisheng , Guo Yinghai , et al. Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi Formation in southeast Sichuan and northern Guizhou [ J ] . Earth Science Frontiers , 2012 , 19 ( 1 ): 136-145.

[ 8 ] 朱志军,陈洪德,林良彪,等 . 黔北—川东南志留系层序格架下的沉积体系演化特征及有利区带预测[ J ] . 沉积学报, 2010 , 28( 2 ): 243-253.

Zhu Zhijun , Chen Hongde , Lin Liangbiao , et al. Depositional system evolution characteristics in the framework of sequences of Silurian and prediction of favorable zones in the northern Guizhou-southeastern Sichuan [ J ] . Acta Sedimentologica Sinica , 2010 , 28 ( 2 ): 243-253.

[ 9 ] 孙玮,刘树根,冉波,等 . 四川盆地及周缘地区牛蹄塘组页岩气概况及前景评价[ J ] . 成都理工大学学报:自然科学版, 2012 ,39 ( 2 ): 170-175.

Sun Wei , Liu Shugen , Ran Bo , et al. General situation and prospect evaluation of the shale gas in Niutitang Formation of Sichuan Basin and its surrounding areas [ J ] . Journal of Chengdu University of Technology : Science Technology Edition , 2012 , 39 ( 2 ): 170-175.

[ 10 ] 何建华,丁文龙,付景龙,等 . 页岩微观孔隙成因类型研究[ J ] . 岩性油气藏, 2014 , 26 ( 5 ): 30-35.

He Jianhua , Ding Wenlong , Fu Jinglong , et al. Study on genetic type of micropore in shale reservoir [ J ] . Lithologic Reservoirs , 2014 , 26( 5 ): 30-35.

[ 11 ] 郝乐伟,王琪,唐俊 . 储层岩石微观孔隙结构研究方法与理论综述[ J ] . 岩性油气藏, 2013 , 25 ( 5 ): 123-128.

Hao Lewei , Wang Qi , Tang Jun. Research progress of reservoir microscopic pore structure [ J ] . Lithologic Reservoirs , 2013 , 25 ( 5 ):123-128.

[ 12 ] 秦建中,付小东,腾格尔 . 川东北宣汉—达县地区三叠—志留系海相优质烃源层评价[ J ] . 石油实验地质, 2008 , 30 ( 4 ): 367-374.

Qin Jianzhong , Fu Xiaodong , Tenger. Evaluation of the excellent Triassic to Silurian marine hydrocarbon source rocks in Xuanhan-Daxian area of Northeast Sichuan Basin [ J ] . Petroleum Geology & Experiment , 2008 , 30 ( 4 ): 367-374.

[ 13 ] 梁狄刚,郭彤楼,陈建平,等 . 中国南方海相生烃成藏研究的若干新进展(一)南方四套区域性海相烃源岩的分布[ J ] . 海相油气地质, 2008 , 13 ( 2 ): 1-16.

Liang Digang , Guo Tonglou , Chen Jianping , et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions , southern China ( Part 1 ): Distribution of four suits of regional marine source rocks [ J ] . Marine Origin Petroleum Geology , 2008 , 13 ( 2 ): 1-16.

[ 14 ] 李新景,吕宗刚,董大忠,等 . 北美页岩气资源形成的地质条件[ J ] . 天然气工业, 2009 , 29 ( 5 ): 27-32.

Li Xinjing , Lü Zonggang , Dong Dazhong , et al. Geologic controls on accumulationofshalegasinNorthAmerica [ J ] .NaturalGasIndustry ,2009 , 29 ( 5 ): 27-32.

[ 15 ] 王世谦,陈更生,董大忠,等 . 四川盆地下古生界页岩气藏形成条件与勘探前景[ J ] . 天然气工业, 2009 , 29 ( 5 ): 51-58.

Wang Shiqian , Chen Gengsheng , Dong Dazhong , et al. Accumulation conditions and exploitation prospect of shale gas in the Lower Paleozoic Sichuan Basin [ J ] . Natural Gas Industry , 2009 , 29 ( 5 ): 51-58.

[ 16 ] 黄籍中 . 四川盆地页岩气与煤层气勘探前景分析[ J ] . 岩性油气藏, 2009 , 21 ( 2 ): 116-120.

Huang Jizhong. Exploration prospect of shale gas and coal-bed methane in Sichuan Basin [ J ] . Lithologic Reservoirs , 2009 , 21 ( 2 ):116-120.

[ 17 ] Kinley T J , Cook L W , Breyer J A. Hydrocarbon 463 potential of the Barnett Shale ( Mississippian ), Delaware Basin , west Texas and 464 southern New Mexico [ J ] . AAPG Bulletin , 2008 , 92 ( 8 ): 967-991.

[ 18 ] Sing K S W , Everett D H , Haul R A W , et al. Reporting physicsorption data for gas/solid systems with special reference to the determination of surface area and porosity [ J ] . Pure and Applied Chemistry , 1985 ,57 ( 4 ): 603-619.

[ 19 ] Gregg S J , Sing K S W. Adsorption, surface area and porosity [ M ] .2nd edtion. London : Academic Press , 1982.

[ 20 ] Jarvie D M , Hill R J , Ruble T E , et al. Unconventional shale gas systems : The Mississippian Barnet t shale of north-central Texas as one model for thermogenic shale gas assessment [ J ] . AAPG Bulletin ,2007 , 91 ( 4 ): 475- 499.

[ 21 ] Lash G G , Engelder T. Thickness trends and sequence stratigraphy of the Middle Devonian Marcellus Formation , Appalachian Basin :Implications for Acadian Foreland Basin evolution [ J ] . AAPG Bulletin ,2011 , 95 ( 1 ): 61-103.

[ 22 ] 吕成福,陈国俊,杜贵超,等 . 酒东坳陷营尔凹陷下白垩统储层孔隙特征及其影响因素研究[ J ] . 沉积学报, 2010 , 28 ( 3 ): 556-562.

Lü Chengfu , ChenGuojun , DuGuichao , etal.Characteristicsof pore evolution and its controls of Lower Cretaceous reservoir in Ying ’ er Depression , JiudongBasin [ J ] .ActaSedimentologicaSinica , 2010 , 28( 3 ): 556-562.


[ 23 ] 李传亮,朱苏阳 . 页岩气其实是自由气[ J ] . 岩性油气藏, 2013 , 25( 1 ): 1-3.

Li Chuanliang , Zhu Suyang. Shale gas is free gas underground [ J ] . Lithologic Reservoirs , 2013 , 25 ( 1 ): 1-3.

[ 24 ] 张金川,金之钧,袁明生 . 页岩气成藏机理和分布[ J ] . 天然气工业, 2004 , 24 ( 7 ): 15-18.

ZhangJinchuan , Jin Zhijun , Yuan Mingsheng. Reservoiring mechanism of shale gas and its distribution [ J ] . Natural Gas Industry , 2004 , 24( 7 ): 15-18.

[ 25 ] Matt Mavor. Barnett Shale gas-in-place volume including sorbed and free gas volume [ C ] . AAPG Southwest Section Meeting , Fort Worth , Texas , 2003.

[ 26 ] Bowker K A. Barnett Shale gas production, Fort Worth Basin : Issues and discussion [ J ] . AAPG Bulletin , 2007 , 91 ( 4 ): 523-533.

[ 27 ] Curtis J B.Fractured shale-gas systems [ J ] . AAPG Bulletin , 2002 ,86 ( 11 ): 1921-1938.

[ 28 ] Chalmers G R L , Ross D J K , Bustin R M. Geological controls on matrix permeability of Devonian Gas Shales in the Horn River and Liard basins , northeastern British Columbia , Canada [ J ] . International Journal of Coal Geology , 2012 , 103 : 120-131.

[1] 洪智宾, 吴嘉, 方朋, 余进洋, 伍正宇, 于佳琦. 纳米限域下页岩中可溶有机质的非均质性及页岩油赋存状态[J]. 岩性油气藏, 2024, 36(6): 160-168.
[2] 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177.
[3] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[4] 张记刚, 杜猛, 陈超, 秦明, 贾宁洪, 吕伟峰, 丁振华, 向勇. 吉木萨尔凹陷二叠系芦草沟组页岩储层孔隙结构定量表征[J]. 岩性油气藏, 2022, 34(4): 89-102.
[5] 柴毓, 王贵文, 柴新. 四川盆地金秋区块三叠系须二段储层非均质性及成因[J]. 岩性油气藏, 2021, 33(4): 29-40.
[6] 龙盛芳, 王玉善, 李国良, 段传丽, 邵映明, 何咏梅, 陈凌云, 焦煦. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2): 59-69.
[7] 梁志凯, 李卓, 李连霞, 姜振学, 刘冬冬, 高凤琳, 刘晓庆, 肖磊, 杨有东. 松辽盆地长岭断陷沙河子组页岩孔径多重分形特征与岩相的关系[J]. 岩性油气藏, 2020, 32(6): 22-35.
[8] 曹江骏, 陈朝兵, 罗静兰, 王茜. 自生黏土矿物对深水致密砂岩储层微观非均质性的影响——以鄂尔多斯盆地西南部合水地区长6油层组为例[J]. 岩性油气藏, 2020, 32(6): 36-49.
[9] 张艳, 高世臣, 孟婉莹, 成育红, 蒋思思. 致密砂岩储层AVO正演模拟过程中的不确定性分析[J]. 岩性油气藏, 2020, 32(6): 120-128.
[10] 戚涛, 胡勇, 李骞, 赵梓寒, 张春, 李滔. 考虑弥散的混溶驱替模拟[J]. 岩性油气藏, 2020, 32(5): 161-169.
[11] 陈怡婷, 刘洛夫, 王梦尧, 窦文超, 徐正建. 鄂尔多斯盆地西南部长6、长7储集层特征及控制因素[J]. 岩性油气藏, 2020, 32(1): 51-65.
[12] 徐波, 王建, 于乐丹, 王凯泽, 董凤娟, 刘峰. 致密油储层成岩相类型及其对产能的影响——以鄂尔多斯盆地姜家川地区长8储层为例[J]. 岩性油气藏, 2018, 30(6): 109-116.
[13] 臧士宾, 郑永仙, 崔俊, 毛建英, 张小波. 砂砾岩储集层微观非均质性定量评价——以柴达木盆地昆北油田为例[J]. 岩性油气藏, 2018, 30(3): 35-42.
[14] 曹茜, 王志章, 王野, 张栋梁, 公言杰, 邹开真, 樊太亮. 砂砾岩储层分布非均质性和质量非均质性研究——以克拉玛依油田五2东区克上组为例[J]. 岩性油气藏, 2018, 30(2): 129-138.
[15] 李友全, 韩秀虹, 阎燕, 张德志, 周志为, 孟凡坤. 低渗透油藏CO2吞吐压力响应曲线分析[J]. 岩性油气藏, 2017, 29(6): 119-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 耿燕飞,张春生,韩校锋,杨大超. 安岳—合川地区低阻气层形成机理研究[J]. 岩性油气藏, 2011, 23(3): 70 -74 .