岩性油气藏 ›› 2020, Vol. 32 ›› Issue (5): 161169.doi: 10.12108/yxyqc.20200517
戚涛1, 胡勇2, 李骞1, 赵梓寒1, 张春1, 李滔1
QI Tao1, HU Yong2, LI Qian1, ZHAO Zihan1, ZHANG Chun1, LI Tao1
摘要: 弥散是混溶驱替过程中一种重要的传质方式,在一定程度上决定着体积波及效率,然而很多混溶驱替模拟过程均未考虑弥散的影响。为此,根据随机建模方法来构建体中心网络模型,利用Kirchoff定律和有限差分方法对模型压力场和浓度场进行耦合求解,开展混溶驱的动态网络模拟,分析孔隙结构特征参数与流体流动参数对混溶驱的影响。结果表明:与不考虑弥散的混溶驱相比,考虑弥散的混溶驱体积波及效率更高,驱替流体突破时间更晚,前缘突破时的采出程度更高;对于考虑弥散的混溶驱,孔隙非均质性越强(或孔隙连通性越低或黏度比越大或驱替流量越大),黏性指进现象越明显,体积波及效率越低,前缘突破时间越早,采出程度越低;前缘突破时的采出程度与孔隙非均质性(或孔隙连通性)呈线性关系,与黏度比(或驱替流量)呈乘幂关系。该研究成果对于弄清溶质运移规律和提高驱替流体的体积波及效率具有重要意义。
中图分类号:
[1] SHERIF M, KACIMOV A, JAVADI A, et al. Modeling groundwater flow and seawater intrusion in the coastal aquifer of Wadi Ham,UAE. Water Resources Management, 2012, 26(3):751-774. [2] 胡永乐, 郝明强, 陈国利, 等.中国CO2驱油与埋存技术及实践.石油勘探与开发, 2019, 46(4):716-727. HU Y L,HAO M Q,CHEN G L,et al. Technologies and practice of CO 2 flooding and sequestration in China. Petroleum Exploration and Development, 2019, 46(4):716-727. [3] 唐梅荣, 张同伍, 白晓虎, 等. 孔喉结构对CO2驱储层伤害程度的影响. 岩性油气藏, 2019, 31(3):113-119. TANG M R,ZHANG T W,BAI X H,et al. Influence of pore throat structure on reservoir damage with CO2 flooding. Lithologic Reservoirs, 2019,31(3):113-119. [4] 尚庆华, 王玉霞, 黄春霞, 等.致密砂岩油藏超临界与非超临界CO2驱油特征.岩性油气藏, 2018, 30(3):153-158. SHANG Q H, WANG Y X, HUANG C X, et al. Supercritical and non-supercritical CO2 flooding characteristics in tight sandstone reservoir. Lithologic Reservoirs, 2018, 30(3):153-158. [5] 杨红, 王宏,南宇峰, 等.油藏CO2驱油提高采收率适宜性评价. 岩性油气藏, 2017, 29(3):140-146. YANG H, WANG H, NAN Y F, et al. Suitability evaluation of enhanced oil recovery by CO2 flooding. Lithologic Reservoirs, 2017, 29(3):140-146. [6] 陈祖华, 汤勇, 王海妹. CO2驱开发后期防气窜综合治理方法研究.2015, 26(5):102-106. CHEN Z H, TANG Y, WANG H M. Comprehensive treat ment of gas channeling at the later stage of CO2 flooding. Lithologic Reservoirs, 2015, 26(5):102-106. [7] 马力, 欧阳传湘, 谭钲扬, 等.低渗透油藏CO2驱中后期提效方法研究.岩性油气藏, 2018, 30(2):139-145. MA L, OUYANG C X, TAN Z Y, et al. Efficiency improvement of CO 2 flooding in middle and later stage for low permeability reservoirs. Lithologic Reservoirs, 2018, 30(2):139-145. [8] MOHIUDDIN Z,STOKES Y,HAGHIGHI M. Pore level simulation of miscible injection with gravity domination. Energy Procedia, 2013, 37:6885-6900. [9] EBRAHIMI F, SAHIMI M. Multiresolution wavelet scale Up of unstable miscible displacements in flow through heterogeneous porous media. Transport in Porous Media, 2004, 57(1):75-102. [10] STEVENSON K, FERER M, BROMHAL G S, et al. 2-D network model simulations of miscible two-phase flow displacements in porous media:Effects of heterogeneity and viscosity. Physica A, 2006, 367:7-24. [11] HEKMATZADEH M, DADVAR M, SAHIMI M. Pore-network simulation of unstable miscible displacements in porous media. Transport in Porous Media, 2016, 113(3):511-529. [12] XIA M. Pore-scale simulation of miscible displacement in porous media using the lattice Boltzmann method. Computers & Geosciences, 2015, 88:30-40. [13] ZHANG T, SHI B C, HUANG C, et al. Pore-scale study of miscible displacements in porous media using lattice Boltzmann method. Journal of Statistical Physics, 2015, 161(6):1453-1481. [14] SIDDIQUI H, SAHIMI M. Computer simulations of miscible displacement processes in disordered porous media. Chemical Engineering Science, 1990, 45(1):163-182. [15] TARTAKOVSKY A M, TARTAKOVSKY D M, MEAKIN P. Stochastic Langevin model for flow and transport in porous media. Physical Review Letters, 2008, 101(4):044502. [16] SIDEIQUI H, SAHIMI M. A statistical model for simulating miscible viscous fingers in porous media and other growth phenomena. Journal of Physics A General Physics, 1999, 23(10):L497. [17] SAHIMI M. Flow and transport in porous media and fractured rock:from classical methods to modern approaches. Weinheim:Wiley-VCH, 2011. [18] KOVAL E J. A method for predicting the performance of unstable miscible displacement in heterogeneous media. Society of Petroleum Engineers Journal, 1963, 3(2):145-154. [19] TAYLOR G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society A, 1953, 219:186-203. [20] ARIS R. On the dispersion of a solute in a fluid flowing through a tube. Proceedings of the Royal Society A, 1956, 235:67-77. [21] BERNABÉ Y, WANG Y, QI T, et al. Passive advection-dispersion in networks of pipes:Effect of connectivity and relationship to permeability. Journal of Geophysical Research Solid Earth, 2016, 121(2):713-728. [22] LI M, QI T, BERNABÉ Y, et al. Simulation of solute transport through heterogeneous networks:Analysis using the method of moments and the statistics of local transport characteristics. Scientific Reports, 2018, 8(1):3780. [23] 讷正.地下水污染:数学模型和数值方法.北京:地质出版社, 1989. NE Z. Groundwater pollution:mathematical model and numerical method. Beijing:Geological Publishing House, 1989. [24] 李熙喆, 卢德唐, 罗瑞兰, 等.复杂多孔介质主流通道定量判识标准.石油勘探与开发, 2019, 46(5):943-949. LI X Z, LU D T, LUO R L, et al. Quantitative criteria for identifying main flow channels in complex porous media. Petroleum Exploration and Development, 2019, 46(5):943-949. [25] 杨兆中, 李小刚, 蒋海, 等.指进现象模拟研究的回顾与展望. 西南石油大学学报(自然科学版), 2010, 32(1):85-88. YANG Z Z, LI X G, JIANG H, et al. Review and prospect of fingering phenomenon simulation. Journal of Southwest Petroleum University(Science & Technology Edition), 2010, 32(1):85-88. |
[1] | 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188. |
[2] | 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157. |
[3] | 郑玉飞, 李翔, 徐景亮, 郑伟杰, 于萌. 储层非均质性对自生CO2调驱效果的影响[J]. 岩性油气藏, 2020, 32(2): 122-128. |
[4] | 谢晓庆. 聚合物驱注采参数无梯度优化新算法[J]. 岩性油气藏, 2019, 31(1): 139-146. |
[5] | 涂汉敏, 郭平, 贾钠, 汪周华, 王千. CPA方程对CO2-水体系相态研究[J]. 岩性油气藏, 2018, 30(4): 113-119. |
|