岩性油气藏 ›› 2020, Vol. 32 ›› Issue (5): 161–169.doi: 10.12108/yxyqc.20200517

• 油气田开发 • 上一篇    下一篇

考虑弥散的混溶驱替模拟

戚涛1, 胡勇2, 李骞1, 赵梓寒1, 张春1, 李滔1   

  1. 1. 中国石油西南油气田分公司 勘探开发研究院, 成都 610041;
    2. 中国石油西南油气田分公司, 成都 610051
  • 收稿日期:2020-01-14 修回日期:2020-03-02 出版日期:2020-10-01 发布日期:2020-08-08
  • 通讯作者: 李骞(1984-),男,博士,高级工程师,主要从事复杂气藏开发机理、开发动态预测、数值模拟等方面的研究工作。地址:(610041)四川省成都市高新区天府大道北段12号。Email:liqian05@petrochina.com.cn。 E-mail:liqian05@petrochina.com.cn
  • 作者简介:戚涛(1988-),男,博士,工程师,主要从事油气藏渗流理论和数值模拟方面的研究工作。地址:(610041)四川省成都市高新区天府大道北段12号。Email:qtaoh2018@petrochina.com.cn
  • 基金资助:
    “十三五”国家科技重大专项“四川盆地大型碳酸盐岩气田开发示范工程”(编号:2016ZX05052-002)与中国石油天然气股份有限公司重大科技专项“西南油气田天然气上产300亿立方米关键技术研究与应用”(编号:2016E-0605)联合资助

Miscible displacement simulation with dispersion

QI Tao1, HU Yong2, LI Qian1, ZHAO Zihan1, ZHANG Chun1, LI Tao1   

  1. 1. Research Institute of Exploration and Development, PetroChina Southwest Oil & Gas Field Company, Chengdu 610041, China;
    2. PetroChina Southwest Oil & Gas Field Company, Chengdu 610051, China
  • Received:2020-01-14 Revised:2020-03-02 Online:2020-10-01 Published:2020-08-08

摘要: 弥散是混溶驱替过程中一种重要的传质方式,在一定程度上决定着体积波及效率,然而很多混溶驱替模拟过程均未考虑弥散的影响。为此,根据随机建模方法来构建体中心网络模型,利用Kirchoff定律和有限差分方法对模型压力场和浓度场进行耦合求解,开展混溶驱的动态网络模拟,分析孔隙结构特征参数与流体流动参数对混溶驱的影响。结果表明:与不考虑弥散的混溶驱相比,考虑弥散的混溶驱体积波及效率更高,驱替流体突破时间更晚,前缘突破时的采出程度更高;对于考虑弥散的混溶驱,孔隙非均质性越强(或孔隙连通性越低或黏度比越大或驱替流量越大),黏性指进现象越明显,体积波及效率越低,前缘突破时间越早,采出程度越低;前缘突破时的采出程度与孔隙非均质性(或孔隙连通性)呈线性关系,与黏度比(或驱替流量)呈乘幂关系。该研究成果对于弄清溶质运移规律和提高驱替流体的体积波及效率具有重要意义。

关键词: 弥散, 混溶驱, 网络模拟, 孔隙非均质性, 孔隙连通性, 黏度比, 驱替流量

Abstract: Dispersion is an important mass transfer method in miscible displacement process,which determines volume sweep efficiency to a certain extent. However, dispersion is not considered in many miscible displacement processes. Therefore,the body center network model was built according to the stochastic modeling method. Kirchoff's law and finite difference method were used to solve the coupling of pressure field and concentration field of the model. The dynamic network simulation of miscible displacement was carried out,and the influences of pore structure characteristic parameters and fluid flow parameters on miscible displacement were analyzed. The results show that compared with miscible displacement without dispersion,miscible displacement with dispersion has larger volume sweep efficiency,later breakthrough time of displacement fluid and higher recovery degree corresponding to breakthrough. For the miscible displacement with dispersion,the stronger the heterogeneity of pores(or the lower the connectivity of pores,or the larger the viscosity ratio,or the larger the displacement flow),the more obvious the fingering phenomenon,the lower the volume sweep efficiency,the earlier the breakthrough time of front,and the lower the recovery degree. At the same time,the recovery degree corresponding to the breakthrough is linearly related to the heterogeneity of pores(or the connectivity of pores), and is exponentially related to the viscosity ratio(or displacement velocity). The results are of great significance to clarify the solute transport law and expand the volume sweep efficiency of displacement fluid.

Key words: dispersion, miscible displacement, network simulation, pore heterogeneity, pore connectivity, viscosity ratio, displacing velocity

中图分类号: 

  • TE357.4
[1] SHERIF M, KACIMOV A, JAVADI A, et al. Modeling groundwater flow and seawater intrusion in the coastal aquifer of Wadi Ham,UAE. Water Resources Management, 2012, 26(3):751-774.
[2] 胡永乐, 郝明强, 陈国利, 等.中国CO2驱油与埋存技术及实践.石油勘探与开发, 2019, 46(4):716-727. HU Y L,HAO M Q,CHEN G L,et al. Technologies and practice of CO 2 flooding and sequestration in China. Petroleum Exploration and Development, 2019, 46(4):716-727.
[3] 唐梅荣, 张同伍, 白晓虎, 等. 孔喉结构对CO2驱储层伤害程度的影响. 岩性油气藏, 2019, 31(3):113-119. TANG M R,ZHANG T W,BAI X H,et al. Influence of pore throat structure on reservoir damage with CO2 flooding. Lithologic Reservoirs, 2019,31(3):113-119.
[4] 尚庆华, 王玉霞, 黄春霞, 等.致密砂岩油藏超临界与非超临界CO2驱油特征.岩性油气藏, 2018, 30(3):153-158. SHANG Q H, WANG Y X, HUANG C X, et al. Supercritical and non-supercritical CO2 flooding characteristics in tight sandstone reservoir. Lithologic Reservoirs, 2018, 30(3):153-158.
[5] 杨红, 王宏,南宇峰, 等.油藏CO2驱油提高采收率适宜性评价. 岩性油气藏, 2017, 29(3):140-146. YANG H, WANG H, NAN Y F, et al. Suitability evaluation of enhanced oil recovery by CO2 flooding. Lithologic Reservoirs, 2017, 29(3):140-146.
[6] 陈祖华, 汤勇, 王海妹. CO2驱开发后期防气窜综合治理方法研究.2015, 26(5):102-106. CHEN Z H, TANG Y, WANG H M. Comprehensive treat ment of gas channeling at the later stage of CO2 flooding. Lithologic Reservoirs, 2015, 26(5):102-106.
[7] 马力, 欧阳传湘, 谭钲扬, 等.低渗透油藏CO2驱中后期提效方法研究.岩性油气藏, 2018, 30(2):139-145. MA L, OUYANG C X, TAN Z Y, et al. Efficiency improvement of CO 2 flooding in middle and later stage for low permeability reservoirs. Lithologic Reservoirs, 2018, 30(2):139-145.
[8] MOHIUDDIN Z,STOKES Y,HAGHIGHI M. Pore level simulation of miscible injection with gravity domination. Energy Procedia, 2013, 37:6885-6900.
[9] EBRAHIMI F, SAHIMI M. Multiresolution wavelet scale Up of unstable miscible displacements in flow through heterogeneous porous media. Transport in Porous Media, 2004, 57(1):75-102.
[10] STEVENSON K, FERER M, BROMHAL G S, et al. 2-D network model simulations of miscible two-phase flow displacements in porous media:Effects of heterogeneity and viscosity. Physica A, 2006, 367:7-24.
[11] HEKMATZADEH M, DADVAR M, SAHIMI M. Pore-network simulation of unstable miscible displacements in porous media. Transport in Porous Media, 2016, 113(3):511-529.
[12] XIA M. Pore-scale simulation of miscible displacement in porous media using the lattice Boltzmann method. Computers & Geosciences, 2015, 88:30-40.
[13] ZHANG T, SHI B C, HUANG C, et al. Pore-scale study of miscible displacements in porous media using lattice Boltzmann method. Journal of Statistical Physics, 2015, 161(6):1453-1481.
[14] SIDDIQUI H, SAHIMI M. Computer simulations of miscible displacement processes in disordered porous media. Chemical Engineering Science, 1990, 45(1):163-182.
[15] TARTAKOVSKY A M, TARTAKOVSKY D M, MEAKIN P. Stochastic Langevin model for flow and transport in porous media. Physical Review Letters, 2008, 101(4):044502.
[16] SIDEIQUI H, SAHIMI M. A statistical model for simulating miscible viscous fingers in porous media and other growth phenomena. Journal of Physics A General Physics, 1999, 23(10):L497.
[17] SAHIMI M. Flow and transport in porous media and fractured rock:from classical methods to modern approaches. Weinheim:Wiley-VCH, 2011.
[18] KOVAL E J. A method for predicting the performance of unstable miscible displacement in heterogeneous media. Society of Petroleum Engineers Journal, 1963, 3(2):145-154.
[19] TAYLOR G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society A, 1953, 219:186-203.
[20] ARIS R. On the dispersion of a solute in a fluid flowing through a tube. Proceedings of the Royal Society A, 1956, 235:67-77.
[21] BERNABÉ Y, WANG Y, QI T, et al. Passive advection-dispersion in networks of pipes:Effect of connectivity and relationship to permeability. Journal of Geophysical Research Solid Earth, 2016, 121(2):713-728.
[22] LI M, QI T, BERNABÉ Y, et al. Simulation of solute transport through heterogeneous networks:Analysis using the method of moments and the statistics of local transport characteristics. Scientific Reports, 2018, 8(1):3780.
[23] 讷正.地下水污染:数学模型和数值方法.北京:地质出版社, 1989. NE Z. Groundwater pollution:mathematical model and numerical method. Beijing:Geological Publishing House, 1989.
[24] 李熙喆, 卢德唐, 罗瑞兰, 等.复杂多孔介质主流通道定量判识标准.石油勘探与开发, 2019, 46(5):943-949. LI X Z, LU D T, LUO R L, et al. Quantitative criteria for identifying main flow channels in complex porous media. Petroleum Exploration and Development, 2019, 46(5):943-949.
[25] 杨兆中, 李小刚, 蒋海, 等.指进现象模拟研究的回顾与展望. 西南石油大学学报(自然科学版), 2010, 32(1):85-88. YANG Z Z, LI X G, JIANG H, et al. Review and prospect of fingering phenomenon simulation. Journal of Southwest Petroleum University(Science & Technology Edition), 2010, 32(1):85-88.
[1] 郑玉飞, 李翔, 徐景亮, 郑伟杰, 于萌. 储层非均质性对自生CO2调驱效果的影响[J]. 岩性油气藏, 2020, 32(2): 122-128.
[2] 谢晓庆. 聚合物驱注采参数无梯度优化新算法[J]. 岩性油气藏, 2019, 31(1): 139-146.
[3] 涂汉敏, 郭平, 贾钠, 汪周华, 王千. CPA方程对CO2-水体系相态研究[J]. 岩性油气藏, 2018, 30(4): 113-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .