岩性油气藏 ›› 2018, Vol. 30 ›› Issue (4): 113–119.doi: 10.12108/yxyqc.20180413

• 油气田开发 • 上一篇    下一篇

CPA方程对CO2-水体系相态研究

涂汉敏1, 郭平1, 贾钠2, 汪周华1, 王千3   

  1. 1. 油气藏地质及开发工程国家重点实验室·西南石油大学, 成都 610500;
    2. 里贾纳大学 工程与应用科学学院石油工程系, 里贾纳 S4S0A2, 加拿大;
    3. 中海石油 (中国) 有限公司天津分公司, 天津 300452
  • 收稿日期:2018-01-16 修回日期:2018-03-31 出版日期:2018-07-21 发布日期:2018-07-21
  • 通讯作者: 郭平(1965-),男,硕士,教授,博士生导师,主要从事油气相态、气田开发、油气藏工程、注气提高采收率的教学和科研工作。Email:guopingswpi@vip.sina.com。 E-mail:guopingswpi@vip.sina.com
  • 作者简介:涂汉敏(1989-),女,西南石油大学在读博士研究生,研究方向为相态、扩散和气田开发。地址:(610500)四川省成都市新都区新都大道8号西南石油大学。Email:t.hanmin@yahoo.com
  • 基金资助:
    国家自然科学基金项目“考虑毛管压力和吸附影响的CO2-原油非平衡扩散理论及分子动力学研究”(编号:51374179)和国家留学基金委“国家建设高水平大学公派研究生项目”(编号:201708510114)联合资助

Calculation of phase behavior for CO2-water mixtures using CPA EoS

TU Hanmin1, GUO Ping1, JIA Na2, WANG Zhouhua1, WANG Qian3   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. Program of Petroleum Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina S4S0A2, Canada;
    3. CNOOC China Co. Ltd. Tianjing Company, Tianjing 300452, China
  • Received:2018-01-16 Revised:2018-03-31 Online:2018-07-21 Published:2018-07-21

摘要: CO2作为酸性气体之一,其热力学性质对石油、天然气开发至关重要。水通常在地层中与烃类共生,由于地层盐水的存在使得与烃类混合的气体量减少,并且这种效应将随着压力和水相量的增加而增加(随盐度的降低而减小)。因此,弄清CO2-水体系的热力学性质将对理解这些过程具有重要的指导意义。通过运用SRK-CPA状态方程结合CR-1混合规则对CO2-水体系的相平衡特征进行计算,研究CO2在水中的溶解度和水在CO2气相中的溶解度,并对308 K,373 K和473 K等3种温度下,CO2-水体系不同缔合模型相互作用的模拟结果与实验数据进行分析,结果表明:在CO2的临界温度和临界压力附近,由于发生了由气-液到液-液的相态转变,CO2和水的溶解度在此温度和压力点将发生显著的变化;当CO2作为非缔合物与缔合模型为4 C的水发生溶剂化交叉缔合时,运用CPA方程计算的溶解度结果与实验数据拟合较好。CPA方程在工程应用中能够满足含CO2和水体系的热力学性质预测需求。

关键词: 水驱气藏, 水侵识别, 出水规律, 控制因素, 水体大小, 西湖凹陷

Abstract: Carbon dioxide(CO2)is an acid gas, and its thermodynamic properties are vital to numerous processes in the oil and gas. Water always coexists with hydrocarbons in petroleum reservoirs, and the presence of brine may reduce the amount of gas to be mixed with hydrocarbons. This effect increases with increasing pressure and the amount of aqueous phase(while decreases with the decreasing of salinity). Hence, the understanding of the thermodynamics of CO2-water mixtures is quite crucial for the rational design and operation of many processes. The characteristics of phase behavior for CO2-water mixtures were studied by using Cubic-Plus-Association (CPA)Equation of State(EoS)to combine with the CR-1 mixing rule to assess the mutual solubility of CO2 and water. CO2 can be treated in three different ways:(1)as a non-associating molecule; (2)as an associating molecule that can be cross-associate with water(solvation);(3)as a self and cross associating molecule. As water is considered as an associating molecule,it has three association schemes of 2 B, 3 B and 4 C. The performance of CPA EoS using different interaction models was evaluated and discussed at three temperatures of 308 K, 373 K and 473 K, and also was compared to various recent published investigations. It demonstrates the complicated phase behavior of CO2 and water, especially when they are close to the critical point of CO2, where thermodynamic properties sudden changed. The results show that good agreement with experimental data can be achieved when CO2 is considered as a non-associating molecule and 4 C association scheme is considered in the calculation model.

Key words: water drive gas reservoir, water invasion identification, water production laws, controlling factors, water size, Xihu Sag

中图分类号: 

  • TE357.45
[1] 杨红, 王宏, 南宇峰, 等.油藏CO2驱油提高采收率适宜性评价.岩性油气藏, 2017, 29(3):140-146. YANG H,WANG H,NAN Y F,et al. Suitability evaluation of enhanced oil recovery by CO2 flooding. Lithologic Reservoirs, 2017, 29(3):140-146.
[2] 郭平, 许清华, 孙振, 等.天然气藏CO2驱及地质埋存技术研究进展.岩性油气藏, 2016, 28(3):6-11. GUO P, XU Q H, SUN Z, et al. Research progress of CO2 flooding and geological storage in gas reservoirs. Lithologic Reservoirs, 2016, 28(3):6-11.
[3] 陈祖华, 汤勇, 王海妹, 等.CO2驱开发后期防气窜综合治理方法研究.岩性油气藏, 2014, 26(5):102-106. CHEN Z H, TANG Y, WANG H M, et al. Comprehensive treatment of gas channeling at the later stage of CO2 flooding. Lithologic Reservoirs, 2014, 26(5):102-106.
[4] 李友全, 韩秀虹, 阎燕, 等.低渗透油藏CO2吞吐压力响应曲线分析. 岩性油气藏, 2017, 29(6):119-127. LI Y Q,HAN X H,YAN Y, et al. Pressure transient analysis on CO2 huff and puff in low permeability reservoir. Lithologic Reservoirs, 2017, 29(6):119-127.
[5] 陆正元, 孙冬华, 黎华继, 等.气藏凝析水引起的地层水矿化度淡化问题——以四川盆地新场气田须二段气藏为例.天然气工业, 2015, 35(7):60-65. LU Z Y, SUN D H, LI H J, et al. Formation water desalination caused by condensate water of gas reservoirs:a case study of the 2nd member of Xujiahe Formation in the Xinchang Gas Field, Sichuan Basin. Natural Gas Industry, 2015, 35(7):60-65.
[6] 王长权, 汤勇, 杜志敏, 等.含水凝析气相态特征及非平衡压降过程产液特征.石油学报, 2013, 34(4):740-746. WANG C Q, TANG Y, DU Z M, et al. Phase behaviors of condensate gas with vaporous water and liquid production characteristics in a non-equilibrium pressure drop process. Acta Petrolei Sinica, 2013, 34(4):740-746.
[7] 熊钰, 张烈辉, 史云清, 等.含水气贫凝析气体系的相态及渗流特征.天然气工业, 2006, 26(4):83-85. XIONG Y, ZHANG L H, SHI Y Q, et al. Phase behaviors and percolation characteristics of lean condensate gas system with water vapor. Natural Gas Industry, 2006, 26(4):83-85.
[8] 石德佩, 孙雷, 刘建仪, 等.高温高压含水凝析气相态特征研究.天然气工业, 2006, 26(3):95-97. SHI D P, SUN L, LIU J Y, et al. Phase behavior of wet condensate gas at high temperature and pressure. Natural Gas Industry, 2006, 26(3):95-97.
[9] 石德佩, 孙雷, 李东平, 等.关于烃-水体系相平衡研究的现状及新进展.西南石油学院学报, 2005, 27(3):49-53. SHI D P, SUN L, LI D P, et al. The domestic and abroad situation and the latest development of hydrocarbon-water phase equilibria. Journal of Southwest Petroleum Institute, 2005, 27(3):49-53.
[10] 贾英, 严谨, 孙雷, 等.松南火山岩气藏流体相态特征研究.西南石油大学学报自然科学版, 2015, 37(5):91-98. JIA Y, YAN J, SUN L, et al. Research on phase behavior of high CO2 fluid of Songnan volcanic reservoir. Journal of Southwest Petroleum University:Science & Technology Edition, 2015, 37(5):91-98.
[11] 叶安平, 郭平, 王绍平, 等.利用PR状态方程确定CO2驱最小混相压力.岩性油气藏, 2012, 24(6):125-128. YE A P, GUO P, WANG S P, et al. Determination of minimum miscibility pressure for CO2 flooding by using PR equation of state. Lithologic Reservoirs, 2012, 24(6):125-128.
[12] KONTOGEORGIS G M, MICHELSEN M L, FOLAS G K, et al. Ten years with the CPA(Cubic-Plus-Association)equation of state. Part 1. Pure compounds and self-associating systems. Industrial & Engineering Chemistry Research, 2006, 45(14):4855-4868.
[13] KONTOGEORGIS G M, VOUTSAS E C, YAKOUMIS I V, et al. An equation of state for associating fluids. Industrial & Engineering Chemistry Research, 1996, 35(11):4310-4318.
[14] MICHELSEN M L, HENDRIKS E M. Physical properties from association models. Fluid Phase Equilibria, 2001, 180(1/2):165-174.
[15] BUTTON J K, GUBBINS K E. SAFT prediction of vapor-liquid equilibria of mixtures containing carbon dioxide and aqueous monoethanolamine or diethanolamine. Fluid Phase Equilibria, 1999, s158-160(5):175-181.
[16] TSIVINTZELIS I, KONTOGEORGIS G M, MICHELSEN M L, et al. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part Ⅱ:Binary mixtures with CO2. Fluid Phase Equilibria, 2011, 306(306):38-56.
[17] VOUTSAS E, PERAKIS C, PAPPA G, et al. An evaluation of the performance of the Cubic-Plus-Association equation of state in mixtures of non-polar,polar and associating compounds:towards a single model for non-polymeric systems. Fluid Phase Equilibria, 2007, 261(1/2):343-350.
[18] PAPPA G D, PERAKIS C, TSIMPANOGIANNIS I N, et al. Thermodynamic modeling of the vapor-liquid equilibrium of the CO2/H2O mixture. Fluid Phase Equilibria, 2009, 284(1):56-63.
[19] PERAKIS C, VOUTSAS E, MAGOULAS K, et al. Thermodynamic modeling of the vapor-liquid equilibrium of the water/ethanol/CO2 system. Fluid Phase Equilibria, 2006, 243(1/2):142-150.
[20] OLIVEIRA M B, QUEIMADA A J, KONTOGEORGIS G M, et al. Evaluation of the CO2, behavior in binary mixtures with alkanes,alcohols,acids and esters using the Cubic-Plus-Association Equation of State. Journal of Supercritical Fluids, 2011, 55(3):876-892.
[21] KONTOGEORGIS G M, FOLAS G K, MURO-SUÑÉ N, et al. Solvation phenomena in association theories with applications to oil & gas and chemical industries. Oil & Gas Science and Technology, 2008, 63(3):305-319.
[22] DERAWI S O, KONTOGEORGIS G M, STENBY E H, et al. Extension of the Cubic-Plus-Association equation of state to glycolwater cross-associating systems. Industrial & Engineering Chemistry Research, 2003, 42(7):1470-1477.
[23] KONTOGEORGIS G M, YAKOUMIS I V, MEIJER H, et al. Multicomponent phase equilibrium calculations for water-methanol-alkane mixtures. Fluid Phase Equilibria, 1999, 158-160(5):201-209.
[24] ZIRRAHI M, HASSANZADEH H, ABEDI J. Prediction of water solubility in petroleum fractions and heavy crudes using cubicplus-association equation of state(CPA-EOS). Fuel, 2015, 159:894-899.
[25] KARIMI S, RAEISSI S, FLORUSSE L J, et al. High-pressure phase behavior of methanol + ethylene:Experimental measurements and CPA modeling. Journal of Supercritical Fluids, 2014, 92:47-54.
[26] SOAVE G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science, 1972, 27(6):1197-1203.
[27] WERTHEIM M S. Thermodynamic perturbation theory of polymerization. The Journal of Chemical Physics, 1987, 87(12):7323-7331.
[28] FOLAS G K, KONTOGEORGIS G M, MICHELSEN M L, et al. Application of the cubic-plus-association(CPA)equation of state to complex mixtures with aromatic hydrocarbons. Industrial & Engineering Chemistry Research, 2006, 45(4):1527-1538.
[29] HUANG S H, RADOSZ M. Equation of state for small, large, polydisperse, and associating molecules:Extension to fluid mixtures. Industrial & Engineering Chemistry Research, 1990, 30(8):1994-2005.
[30] KARLSTROM G, WENNERSTROM H, JONSSON B, et al. Intramolecular hydrogen bond. Ab initio MO calculations on the enol tautomer of malondialdehyde. Journal of the American Chemical Society, 1975, 97(15):4188-4192.
[31] YAKOUMIS I V, KONTOGEORGIS G M, VOUTSAS E C, et al. Prediction of phase equilibria in binary aqueous systems containing alkanes, cycloalkanes, and alkenes with the cubic-plusassociation equation of state. Industrial & Engineering Chemistry Research, 1998, 37(10):4175-4182.
[32] TAKENOUCHI S, KENNEDY G C. The binary system H2O-CO2 at high temperatures and pressures. American Journal of Science, 1964, 262(9):1055-1074.
[33] NIGHSWANDER J A, KALOGERAKIS N, MEHROTRA A K. Solubilities of carbon dioxide in water and 1 wt.% sodium chloride solution at pressures up to 10 MPa and temperatures from 80 to 200 degree. Journal of Chemical & Engineering Data, 1989, 34(3):355-360.
[34] ZAWISZA A, MALESINSKA B. Solubility of carbon dioxide in liquid water and of water in gaseous carbon dioxide in the range 0.2-5 MPa and at temperatures up to 473 K. Journal of Chemical & Engineering Data, 1981, 26(4):73-74.
[35] WIEBE R, GADDY V L. The Solubility in water of carbon dioxide at 50, 75 and 100°, at pressures to 700 atmospheres. Journal of the American Chemical Society, 1939, 61(2):315-318.
[36] VALTZ A, CHAPOY A, COQUELET C, et al. Vapour-liquid equilibria in the carbon dioxide-water system,measurement and modelling from 278.2 to 318.2 K. Fluid Phase Equilibria, 2004, 226(3):333-344.
[37] OLIVEIRA M B, COUTINHO J A P, QUEIMADA A J. Mutual solubility of hydrocarbons and water with the CPA EoS. Fluid Phase Equilibria, 2007, 258(1):58-66.
[1] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[2] 田清华, 刘俊, 张晨, 王文胜, 黄丹. 苏里格气田下古生界储层特征及主控因素[J]. 岩性油气藏, 2020, 32(2): 33-42.
[3] 邓成刚, 李江涛, 柴小颖, 陈汾君, 杨喜彦, 王海成, 连运晓, 涂加沙. 涩北气田弱水驱气藏水侵早期识别方法[J]. 岩性油气藏, 2020, 32(1): 128-134.
[4] 段治有, 李贤庆, 陈纯芳, 马立元, 罗源. 杭锦旗地区J58井区下石盒子组气水分布及其控制因素[J]. 岩性油气藏, 2019, 31(3): 45-54.
[5] 王良军. 川北地区灯影组四段优质储层特征及控制因素[J]. 岩性油气藏, 2019, 31(2): 35-45.
[6] 鹿克峰, 马恋, 刘彬彬, 李宁, 刘启楠, 宋刚祥. 水驱气藏早期直线外推动储量探讨[J]. 岩性油气藏, 2019, 31(1): 153-158.
[7] 孟凡洋, 陈科, 包书景, 李浩涵, 张聪, 王劲铸. 湘西北复杂构造区下寒武统页岩含气性及主控因素分析——以慈页1井为例[J]. 岩性油气藏, 2018, 30(5): 29-39.
[8] 姚泾利, 李勇, 陈世加, 邱雯, 苏恺明, 何清波. 定边—吴起地区长61储层特征及其对含油性的控制[J]. 岩性油气藏, 2018, 30(4): 56-64.
[9] 杨有星, 金振奎, 白忠凯, 高永进, 韩淼, 张金虎. 辫状河单河道砂体接触关系及主控因素分析——以新疆克拉玛依,山西柳林、大同和陕西延安辫状河露头为例[J]. 岩性油气藏, 2018, 30(2): 30-38.
[10] 时瑞坤, 高秋菊, 韩小锋, 巴素玉, 师涛, 韩敏. 车镇凹陷沙二段滩坝砂体沉积特征及控制因素[J]. 岩性油气藏, 2018, 30(2): 50-57.
[11] 廖恒杰, 杨志兴, 李元生, 程俊阳, 程超. 西湖凹陷气藏出水规律及控制因素[J]. 岩性油气藏, 2017, 29(6): 135-141.
[12] 史洪亮, 杨克明, 王同. 川西坳陷须五段致密砂岩与泥页岩储层特征及控制因素[J]. 岩性油气藏, 2017, 29(4): 38-46.
[13] 鹿克峰, 简洁, 张彦振, 朱文娟, 肖晗. 井筒变流量气井携液临界流量的确定方法——以东海西湖凹陷多层合采气井为例[J]. 岩性油气藏, 2017, 29(3): 147-151.
[14] 金凤鸣, 崔周旗, 王权, 李莉, 任春玲, 崔明洋, 肖伟. 冀中坳陷地层岩性油气藏分布特征与主控因素[J]. 岩性油气藏, 2017, 29(2): 19-27.
[15] 吴嘉鹏, 万丽芬, 张兰, 王英民, 赵千慧, 李昆, 王思琦. 西湖凹陷平湖组岩相类型及沉积相分析[J]. 岩性油气藏, 2017, 29(1): 27-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .