岩性油气藏 ›› 2018, Vol. 30 ›› Issue (4): 113119.doi: 10.12108/yxyqc.20180413
涂汉敏1, 郭平1, 贾钠2, 汪周华1, 王千3
TU Hanmin1, GUO Ping1, JIA Na2, WANG Zhouhua1, WANG Qian3
摘要: CO2作为酸性气体之一,其热力学性质对石油、天然气开发至关重要。水通常在地层中与烃类共生,由于地层盐水的存在使得与烃类混合的气体量减少,并且这种效应将随着压力和水相量的增加而增加(随盐度的降低而减小)。因此,弄清CO2-水体系的热力学性质将对理解这些过程具有重要的指导意义。通过运用SRK-CPA状态方程结合CR-1混合规则对CO2-水体系的相平衡特征进行计算,研究CO2在水中的溶解度和水在CO2气相中的溶解度,并对308 K,373 K和473 K等3种温度下,CO2-水体系不同缔合模型相互作用的模拟结果与实验数据进行分析,结果表明:在CO2的临界温度和临界压力附近,由于发生了由气-液到液-液的相态转变,CO2和水的溶解度在此温度和压力点将发生显著的变化;当CO2作为非缔合物与缔合模型为4 C的水发生溶剂化交叉缔合时,运用CPA方程计算的溶解度结果与实验数据拟合较好。CPA方程在工程应用中能够满足含CO2和水体系的热力学性质预测需求。
中图分类号:
[1] 杨红, 王宏, 南宇峰, 等.油藏CO2驱油提高采收率适宜性评价.岩性油气藏, 2017, 29(3):140-146. YANG H,WANG H,NAN Y F,et al. Suitability evaluation of enhanced oil recovery by CO2 flooding. Lithologic Reservoirs, 2017, 29(3):140-146. [2] 郭平, 许清华, 孙振, 等.天然气藏CO2驱及地质埋存技术研究进展.岩性油气藏, 2016, 28(3):6-11. GUO P, XU Q H, SUN Z, et al. Research progress of CO2 flooding and geological storage in gas reservoirs. Lithologic Reservoirs, 2016, 28(3):6-11. [3] 陈祖华, 汤勇, 王海妹, 等.CO2驱开发后期防气窜综合治理方法研究.岩性油气藏, 2014, 26(5):102-106. CHEN Z H, TANG Y, WANG H M, et al. Comprehensive treatment of gas channeling at the later stage of CO2 flooding. Lithologic Reservoirs, 2014, 26(5):102-106. [4] 李友全, 韩秀虹, 阎燕, 等.低渗透油藏CO2吞吐压力响应曲线分析. 岩性油气藏, 2017, 29(6):119-127. LI Y Q,HAN X H,YAN Y, et al. Pressure transient analysis on CO2 huff and puff in low permeability reservoir. Lithologic Reservoirs, 2017, 29(6):119-127. [5] 陆正元, 孙冬华, 黎华继, 等.气藏凝析水引起的地层水矿化度淡化问题——以四川盆地新场气田须二段气藏为例.天然气工业, 2015, 35(7):60-65. LU Z Y, SUN D H, LI H J, et al. Formation water desalination caused by condensate water of gas reservoirs:a case study of the 2nd member of Xujiahe Formation in the Xinchang Gas Field, Sichuan Basin. Natural Gas Industry, 2015, 35(7):60-65. [6] 王长权, 汤勇, 杜志敏, 等.含水凝析气相态特征及非平衡压降过程产液特征.石油学报, 2013, 34(4):740-746. WANG C Q, TANG Y, DU Z M, et al. Phase behaviors of condensate gas with vaporous water and liquid production characteristics in a non-equilibrium pressure drop process. Acta Petrolei Sinica, 2013, 34(4):740-746. [7] 熊钰, 张烈辉, 史云清, 等.含水气贫凝析气体系的相态及渗流特征.天然气工业, 2006, 26(4):83-85. XIONG Y, ZHANG L H, SHI Y Q, et al. Phase behaviors and percolation characteristics of lean condensate gas system with water vapor. Natural Gas Industry, 2006, 26(4):83-85. [8] 石德佩, 孙雷, 刘建仪, 等.高温高压含水凝析气相态特征研究.天然气工业, 2006, 26(3):95-97. SHI D P, SUN L, LIU J Y, et al. Phase behavior of wet condensate gas at high temperature and pressure. Natural Gas Industry, 2006, 26(3):95-97. [9] 石德佩, 孙雷, 李东平, 等.关于烃-水体系相平衡研究的现状及新进展.西南石油学院学报, 2005, 27(3):49-53. SHI D P, SUN L, LI D P, et al. The domestic and abroad situation and the latest development of hydrocarbon-water phase equilibria. Journal of Southwest Petroleum Institute, 2005, 27(3):49-53. [10] 贾英, 严谨, 孙雷, 等.松南火山岩气藏流体相态特征研究.西南石油大学学报自然科学版, 2015, 37(5):91-98. JIA Y, YAN J, SUN L, et al. Research on phase behavior of high CO2 fluid of Songnan volcanic reservoir. Journal of Southwest Petroleum University:Science & Technology Edition, 2015, 37(5):91-98. [11] 叶安平, 郭平, 王绍平, 等.利用PR状态方程确定CO2驱最小混相压力.岩性油气藏, 2012, 24(6):125-128. YE A P, GUO P, WANG S P, et al. Determination of minimum miscibility pressure for CO2 flooding by using PR equation of state. Lithologic Reservoirs, 2012, 24(6):125-128. [12] KONTOGEORGIS G M, MICHELSEN M L, FOLAS G K, et al. Ten years with the CPA(Cubic-Plus-Association)equation of state. Part 1. Pure compounds and self-associating systems. Industrial & Engineering Chemistry Research, 2006, 45(14):4855-4868. [13] KONTOGEORGIS G M, VOUTSAS E C, YAKOUMIS I V, et al. An equation of state for associating fluids. Industrial & Engineering Chemistry Research, 1996, 35(11):4310-4318. [14] MICHELSEN M L, HENDRIKS E M. Physical properties from association models. Fluid Phase Equilibria, 2001, 180(1/2):165-174. [15] BUTTON J K, GUBBINS K E. SAFT prediction of vapor-liquid equilibria of mixtures containing carbon dioxide and aqueous monoethanolamine or diethanolamine. Fluid Phase Equilibria, 1999, s158-160(5):175-181. [16] TSIVINTZELIS I, KONTOGEORGIS G M, MICHELSEN M L, et al. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part Ⅱ:Binary mixtures with CO2. Fluid Phase Equilibria, 2011, 306(306):38-56. [17] VOUTSAS E, PERAKIS C, PAPPA G, et al. An evaluation of the performance of the Cubic-Plus-Association equation of state in mixtures of non-polar,polar and associating compounds:towards a single model for non-polymeric systems. Fluid Phase Equilibria, 2007, 261(1/2):343-350. [18] PAPPA G D, PERAKIS C, TSIMPANOGIANNIS I N, et al. Thermodynamic modeling of the vapor-liquid equilibrium of the CO2/H2O mixture. Fluid Phase Equilibria, 2009, 284(1):56-63. [19] PERAKIS C, VOUTSAS E, MAGOULAS K, et al. Thermodynamic modeling of the vapor-liquid equilibrium of the water/ethanol/CO2 system. Fluid Phase Equilibria, 2006, 243(1/2):142-150. [20] OLIVEIRA M B, QUEIMADA A J, KONTOGEORGIS G M, et al. Evaluation of the CO2, behavior in binary mixtures with alkanes,alcohols,acids and esters using the Cubic-Plus-Association Equation of State. Journal of Supercritical Fluids, 2011, 55(3):876-892. [21] KONTOGEORGIS G M, FOLAS G K, MURO-SUÑÉ N, et al. Solvation phenomena in association theories with applications to oil & gas and chemical industries. Oil & Gas Science and Technology, 2008, 63(3):305-319. [22] DERAWI S O, KONTOGEORGIS G M, STENBY E H, et al. Extension of the Cubic-Plus-Association equation of state to glycolwater cross-associating systems. Industrial & Engineering Chemistry Research, 2003, 42(7):1470-1477. [23] KONTOGEORGIS G M, YAKOUMIS I V, MEIJER H, et al. Multicomponent phase equilibrium calculations for water-methanol-alkane mixtures. Fluid Phase Equilibria, 1999, 158-160(5):201-209. [24] ZIRRAHI M, HASSANZADEH H, ABEDI J. Prediction of water solubility in petroleum fractions and heavy crudes using cubicplus-association equation of state(CPA-EOS). Fuel, 2015, 159:894-899. [25] KARIMI S, RAEISSI S, FLORUSSE L J, et al. High-pressure phase behavior of methanol + ethylene:Experimental measurements and CPA modeling. Journal of Supercritical Fluids, 2014, 92:47-54. [26] SOAVE G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science, 1972, 27(6):1197-1203. [27] WERTHEIM M S. Thermodynamic perturbation theory of polymerization. The Journal of Chemical Physics, 1987, 87(12):7323-7331. [28] FOLAS G K, KONTOGEORGIS G M, MICHELSEN M L, et al. Application of the cubic-plus-association(CPA)equation of state to complex mixtures with aromatic hydrocarbons. Industrial & Engineering Chemistry Research, 2006, 45(4):1527-1538. [29] HUANG S H, RADOSZ M. Equation of state for small, large, polydisperse, and associating molecules:Extension to fluid mixtures. Industrial & Engineering Chemistry Research, 1990, 30(8):1994-2005. [30] KARLSTROM G, WENNERSTROM H, JONSSON B, et al. Intramolecular hydrogen bond. Ab initio MO calculations on the enol tautomer of malondialdehyde. Journal of the American Chemical Society, 1975, 97(15):4188-4192. [31] YAKOUMIS I V, KONTOGEORGIS G M, VOUTSAS E C, et al. Prediction of phase equilibria in binary aqueous systems containing alkanes, cycloalkanes, and alkenes with the cubic-plusassociation equation of state. Industrial & Engineering Chemistry Research, 1998, 37(10):4175-4182. [32] TAKENOUCHI S, KENNEDY G C. The binary system H2O-CO2 at high temperatures and pressures. American Journal of Science, 1964, 262(9):1055-1074. [33] NIGHSWANDER J A, KALOGERAKIS N, MEHROTRA A K. Solubilities of carbon dioxide in water and 1 wt.% sodium chloride solution at pressures up to 10 MPa and temperatures from 80 to 200 degree. Journal of Chemical & Engineering Data, 1989, 34(3):355-360. [34] ZAWISZA A, MALESINSKA B. Solubility of carbon dioxide in liquid water and of water in gaseous carbon dioxide in the range 0.2-5 MPa and at temperatures up to 473 K. Journal of Chemical & Engineering Data, 1981, 26(4):73-74. [35] WIEBE R, GADDY V L. The Solubility in water of carbon dioxide at 50, 75 and 100°, at pressures to 700 atmospheres. Journal of the American Chemical Society, 1939, 61(2):315-318. [36] VALTZ A, CHAPOY A, COQUELET C, et al. Vapour-liquid equilibria in the carbon dioxide-water system,measurement and modelling from 278.2 to 318.2 K. Fluid Phase Equilibria, 2004, 226(3):333-344. [37] OLIVEIRA M B, COUTINHO J A P, QUEIMADA A J. Mutual solubility of hydrocarbons and water with the CPA EoS. Fluid Phase Equilibria, 2007, 258(1):58-66. |
[1] | 李盛谦, 曾溅辉, 刘亚洲, 李淼, 焦盼盼. 东海盆地西湖凹陷孔雀亭地区古近系平湖组储层成岩作用及孔隙演化[J]. 岩性油气藏, 2023, 35(5): 49-61. |
[2] | 马正武, 官大勇, 王启明, 刘尧均, 李晓辉. 辽中凹陷古近系东三段湖底扇沉积特征及控制因素[J]. 岩性油气藏, 2022, 34(2): 131-140. |
[3] | 徐诗雨, 林怡, 曾乙洋, 赵春妮, 何开来, 杨京, 黎洋, 祝怡. 川西北双鱼石地区下二叠统栖霞组气水分布特征及主控因素[J]. 岩性油气藏, 2022, 34(1): 63-72. |
[4] | 熊加贝, 何登发. 全球碳酸盐岩地层-岩性大油气田分布特征及其控制因素[J]. 岩性油气藏, 2022, 34(1): 187-200. |
[5] | 赵小萌, 郭峰, 彭晓霞, 张翠萍, 郭岭, 师宇翔. 鄂尔多斯盆地安边地区延10砂质辫状河相储层特征及主控因素[J]. 岩性油气藏, 2021, 33(6): 124-134. |
[6] | 赵静, 黄志龙, 刘春锋, 李天军, 蒋一鸣, 谭思哲, 黄鋆, 郭小波. 西湖凹陷平北地区煤系烃源岩识别与分布[J]. 岩性油气藏, 2021, 33(5): 95-106. |
[7] | 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51. |
[8] | 田清华, 刘俊, 张晨, 王文胜, 黄丹. 苏里格气田下古生界储层特征及主控因素[J]. 岩性油气藏, 2020, 32(2): 33-42. |
[9] | 邓成刚, 李江涛, 柴小颖, 陈汾君, 杨喜彦, 王海成, 连运晓, 涂加沙. 涩北气田弱水驱气藏水侵早期识别方法[J]. 岩性油气藏, 2020, 32(1): 128-134. |
[10] | 段治有, 李贤庆, 陈纯芳, 马立元, 罗源. 杭锦旗地区J58井区下石盒子组气水分布及其控制因素[J]. 岩性油气藏, 2019, 31(3): 45-54. |
[11] | 王良军. 川北地区灯影组四段优质储层特征及控制因素[J]. 岩性油气藏, 2019, 31(2): 35-45. |
[12] | 鹿克峰, 马恋, 刘彬彬, 李宁, 刘启楠, 宋刚祥. 水驱气藏早期直线外推动储量探讨[J]. 岩性油气藏, 2019, 31(1): 153-158. |
[13] | 孟凡洋, 陈科, 包书景, 李浩涵, 张聪, 王劲铸. 湘西北复杂构造区下寒武统页岩含气性及主控因素分析——以慈页1井为例[J]. 岩性油气藏, 2018, 30(5): 29-39. |
[14] | 姚泾利, 李勇, 陈世加, 邱雯, 苏恺明, 何清波. 定边—吴起地区长61储层特征及其对含油性的控制[J]. 岩性油气藏, 2018, 30(4): 56-64. |
[15] | 杨有星, 金振奎, 白忠凯, 高永进, 韩淼, 张金虎. 辫状河单河道砂体接触关系及主控因素分析——以新疆克拉玛依,山西柳林、大同和陕西延安辫状河露头为例[J]. 岩性油气藏, 2018, 30(2): 30-38. |
|