岩性油气藏 ›› 2018, Vol. 30 ›› Issue (4): 105–112.doi: 10.12108/yxyqc.20180412

• 油气田开发 • 上一篇    下一篇

注采井间优势通道的多层次模糊识别方法

黄斌1, 许瑞1, 傅程1,2, 张威1, 史振中1   

  1. 1. 东北石油大学 石油工程学院, 黑龙江 大庆 163318;
    2. 中国石油大庆油田有限责任公司博士后科研工作站, 黑龙江 大庆 163458
  • 收稿日期:2018-02-10 修回日期:2018-04-03 出版日期:2018-07-21 发布日期:2018-07-21
  • 通讯作者: 傅程(1981-),女,博士,副教授,主要从事油藏数值模拟及聚驱渗流规律的教学与科研工作。Email:sygcxytyb@163.com。 E-mail:sygcxytyb@163.com
  • 作者简介:黄斌(1982-),男,博士,教授,主要从事剩余油分布规律及大孔道识别技术的科研与教学工作。地址:(163318)黑龙江省大庆市萨尔图区东北石油大学石油工程学院。Email:huangbin111@163.com
  • 基金资助:
    黑龙江省博士后基金项目“聚驱后油层大孔道识别与调堵技术研究”(编号:LBH-Z16002)资助

Multi-level fuzzy identification method for interwell thief zone

HUANG Bin1, XU Rui1, FU Cheng1,2, ZHANG Wei1, SHI Zhenzhong1   

  1. 1. College of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China;
    2. Post-Doctoral Scientific Research Station, PetroChina Daqing Oilfield Company, Daqing 163458, Heilongjiang, China
  • Received:2018-02-10 Revised:2018-04-03 Online:2018-07-21 Published:2018-07-21

摘要: 为了正确识别并评价注采井间优势通道的发育情况,制定合适的调剖堵水措施,针对其识别过程的复杂性和模糊性,提出了基于层次分析法与模糊综合评价相结合的多层次模糊综合评价指标体系(AHP-FCE)。该评价指标体系包括3个评价对象子系统和25个评价指标,其中注采井间的连通性通过灰色关联度进行定量表征。将该模型应用于N油田S14层优势通道识别,建立了一级优势通道、次级优势通道、正常孔隙通道3种评价等级,利用熵权法确定各因素权重,选择半梯形隶属度函数计算隶属度矩阵,并根据最大隶属度原则对各注采方向进行了优势通道模糊综合评价。结果表明:共识别出一级优势通道16处、次级优势通道10处,高渗透层及注采关系不完善的井间优势通道发育明显;经过井间示踪剂法验证,识别准确率达87.5%。该方法合理准确,可为油田后期实施调剖堵水措施提供指导。

关键词: 侏罗系, 低频可控震源, 高密度, 宽方位, 宽频反演, 柴达木盆地

Abstract: In order to correctly identify and evaluate the development of the thief zone, and take appropriate blocking measures, considering the complexity and fuzziness of the identification process of the thief zone, a multi-level fuzzy comprehensive evaluation index system(AHP-FCE)based on AHP and fuzzy comprehensive evaluation method was proposed. The evaluation index system consists of three evaluation object subsystems and 25 evaluation indicators, and the interwell connectivity is represented by grey relational degree. The model was applied to the identification of the thief zone in the S14 layer of N oilfield, and three evaluation levels of primary thief zone, secondary thief zone and normal pore channel were established. The weight of each factor was determined by entropy weight method, and the membership degree matrix was calculated by choosing semi trapezoid membership function. According to the principle of maximum membership degree, the thief zone of each interwell was evaluated. The results show that there are 16 primary thief zone and 10 secondary thief zone, and the development of the thief zone is more obvious between the interwells with high permeability and imperfect well pattern relations. The identification results were verified by the well tracer method, and the accuracy rate was 87.5%. The results show that this method is reasonable and accurate, and can provide a clear guidance for profile control or water shut off in the later stage of oilfield.

Key words: Jurassic, low frequency vibroseis, high density, wide azimuth, broadband inversion, Qaidam Basin

中图分类号: 

  • TE122
[1] 辛治国, 贾俊山, 孙波. 优势流场发育阶段定量确定方法研究.西南石油大学学报(自然科学版), 2012, 34(2):119-124. XIN Z G, JIA J S, SUN B. Research on the quantitative determination of the dominant flow field development stages. Journal of Southwest Petroleum University(Science & Technology Edition), 2012, 34(2):119-124.
[2] 姜瑞峰, 高腾飞.高含水环境下优势通道渗流特征解析.石化技术, 2017, 24(1):179. JIANG R F, GAO T F. Seepage characteristics of dominant channels in high water cut reservoir. Petrochemical Technology, 2017, 24(1):179.
[3] 丁帅伟, 姜汉桥, 赵冀, 等.水驱砂岩油藏优势通道识别综述. 石油地质与工程, 2015, 29(5):132-136. DING S W, JIANG H Q, ZHAO J, et al. General description of preferential migration passage in water-flood sandstone reservoir. Petroleum Geology and Engineering, 2015, 29(5):132-136.
[4] 高慧梅, 姜汉桥, 陈民锋.疏松砂岩油藏大孔道识别的典型曲线方法.石油天然气学报, 2009, 31(1):108-111. GAO H M, JIANG H Q, CHEN M F. Typical curves of identification of high capacity channel in unconsolidated sand-stone oil reservoirs. Journal of Oil and Gas Technology, 2009, 31(1):108-111.
[5] 李国娟, 梁杰, 李薇.测井资料识别大孔道的方法研究.油气田地面工程, 2008, 27(9):11-12. LI G J, LIANG J, LI W. Research on the method of identifying high capacity channel by logging data. Oil-Gas Field Surface Engineering, 2008, 27(9):11-12.
[6] 贺承祖, 华明琪.储层孔隙结构的分形几何描述.石油与天然气地质, 1998, 19(1):15-23. HE C Z, HUA M Q. Fractal geometry description of reservoir pore structure. Oil & Gas Geology, 1998, 19(1):15-23.
[7] 郝金克.利用无因次压力指数定性识别优势通道.特种油气藏, 2014, 21(4):123-125. HAO J K. Qualitative identification of prevailing channel by dimensionless pressure index. Special Oil and Gas Reservoirs, 2014, 21(4):123-125.
[8] 刘洪.优势渗流通道的试井解释方法研究.石油地质与工程, 2015, 29(2):98-100. LIU H. Well testing interpretation method research of preferential seepage channels. Petroleum Geology and Engineering. 2015, 29(2):98-100.
[9] 王森, 冯其红, 宋玉龙, 等.基于吸水剖面资料的优势通道分类方法——以孤东油田为例. 油气地质与采收率, 2013, 20(5):99-102. WANG S, FENG Q H, SONG Y L, et al. Preferential flow path classification method based on injection profile data-taking Gudong oilfield as an example. Petroleum Geology and Recovery Efficiency, 2013, 20(5):99-102.
[10] IZGEC B, KABIR S. Identification and characterization of highconductive layers in waterfloods. SPE Reservoir Evaluation & Engineering, 2009, 14(1):113-119.
[11] BATYCKY R P, THIELE M R, BAKER R O. Revisiting reservoir flood-surveillance methods using streamlines. SPE Reservoir Evaluation & Engineering, 2008, 11(2):387-394.
[12] 汪玉琴, 陈方鸿, 顾鸿君, 等.利用示踪剂研究井间水流优势通道.新疆石油地质, 2011, 32(5):512-514. WANG Y Q, CHEN F H, GU H J, et al. Using tracer to study interwell water flow predominant channel. Xinjiang Petroleum Geology, 2011, 32(5):512-514.
[13] 王鸣川, 石成方, 朱维耀, 等.优势渗流通道识别与精确描述. 油气地质与采收率, 2016, 23(1):79-84. WANG M C, SHI C F, ZHU W Y, et al. Identification and accurately description of preponderance flow path. Petroleum Geology and Recovery Efficiency, 2016, 23(1):79-84.
[14] 马峥, 张春雷, 高世臣.主成分分析与模糊识别在岩性识别中的应用.岩性油气藏, 2017, 29(5):127-133. MA Z, ZHANG C L, GAO S C. Lithology identification based on principal component analysis and fuzzy recognition. Lithologic Reservoirs, 2017, 29(5):127-133.
[15] 史洪亮, 杨克明, 王同.川西坳陷须五段致密砂岩与泥页岩储层特征及控制因素.岩性油气藏, 2017, 29(4):38-46. SHI H L, YANG K M, WANG T. Characteristics and controlling factors of tight sandstone and shale reservoirs of the fifth member of Xujiahe Formation in the Western Sichuan Depression. Lithologic Reservoirs, 2017, 29(4):38-46.
[16] 杨希濮, 杨小丽, 刘钧, 等.一体化储层精细分类方法在非均质储层定量表征中的应用. 岩性油气藏, 2017, 29(1):124-129. YANG X P, YANG X L, LIU J, et al. Application of integrated reservoir classification method to the quantitative characterization of heterogeneity reservoir. Lithologic Reservoirs, 2017, 29(1):124-129.
[17] 张继红, 李承龙, 赵广.用灰色模糊综合评判方法识别聚驱后优势通道.大庆石油地质与开发, 2017, 36(1):104-108. ZHANG J H, LI C L, ZHAO G. Grey-fuzzy comprehensive evaluation method identifying the prevailing channel after the polymer flooding. Petroleum Geology and Oilfield Development in Daqing, 2017, 36(1):104-108.
[18] 赵鑫, 刘月田, 丁耀, 等.海上油田优势水流通道模糊综合识别模型.断块油气田, 2017, 24(1):91-95. ZHAO X, LIU Y T, DING Y, et al. Fuzzy comprehensive recognition model of dominant water channels in offshore oilfield. Fault-Block Oil & Gas Field, 2017, 24(1):91-95.
[19] 程启月.评测指标权重确定的结构熵权法.系统工程理论与实践, 2010, 30(7):1225-1228. CHENG Q Y. Structure entropy weight method to confirm the weight of evaluating index. Systems Engineering-Theory & Practice, 2010, 30(7):1225-1228.
[20] CHEN T Y, LI C H. Determining objective weights with intuitionistic fuzzy entropy measures:a comparative analysis. Information Sciences, 2010, 180(21):4207-4222.
[21] ERENSAL Y C, ONCAN T, DEMIRCAN M L. Determining key capabilities in technology management using fuzzy analytic hierarchy process:a case study of Turkey. Information Sciences, 2006, 176(18):2755-2770.
[22] 杨德相, 付广, 孙同文, 等.油源断裂优势通道输导油气能力综合评价方法及其应用.吉林大学学报(地球科学版), 2017, 47(6):1678-1686. YANG D X, FU G, SUN T W, et al. Comprehensive evaluation method and its application of oil carrying capacity through dominant channel of oil source fault. Journal of Jilin University (Earth Science Edition), 2017, 47(6):1678-1686.
[23] 陈红伟, 冯其红, 张先敏, 等.考虑优势通道发育的层状水驱油藏开发指标预测方法. 油气地质与采收率, 2017, 24(4):72-77. CHEN H W, FENG Q H, ZHANG X M, et al. A method of development index prediction for multi-layer water flooding reservoir with preferential flow path. Petroleum Geology and Recovery Efficiency, 2017, 24(4):72-77.
[24] 禹影.聚合物驱后油层优势渗流通道识别与治理.大庆石油地质与开发, 2017, 36(4):101-105. YU Y. Identification and control of the preferential seepage channels for the oil reservoirs after the polymer flooding. Petroleum Geology and Oilfield Development in Daqing, 2017, 36(4):101-105.
[25] 陈月明, 姜汉桥, 李淑霞.井间示踪剂监测技术在油藏非均质性描述中的应用.石油大学学报(自然科学版), 1994, 18(增刊1):1-7. CHEN Y M, JIANG H Q, LI S X. Application of well to well tracer test on reservoir heterogeneity description. Journal of China University of Petroleum, 1994, 18(Suppl 1):1-7.
[26] 李科星, 蒲万芬, 赵军, 等.疏松砂岩油藏大孔道识别综述.西南石油大学学报, 2007, 29(5):42-44. LI K X, PU W F, ZHAO J, et al. Summarization of identification of macro-pores in unconsolidated sand stone oil reservoir. Journal of Southwest Petroleum University, 2007, 29(5):42-44.
[1] 李翔, 王建功, 李飞, 王玉林, 伍坤宇, 李亚锋, 李显明. 柴达木盆地西部始新统湖相微生物岩沉积特征——以西岔沟和梁东地区下干柴沟组为例[J]. 岩性油气藏, 2021, 33(3): 63-73.
[2] 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84.
[3] 郭秋麟, 吴晓智, 卫延召, 柳庄小雪, 刘继丰, 陈宁生. 准噶尔盆地腹部侏罗系油气运移路径模拟[J]. 岩性油气藏, 2021, 33(1): 37-45.
[4] 陈棡, 卞保力, 李啸, 刘刚, 龚德瑜, 曾德龙. 准噶尔盆地腹部中浅层油气输导体系及其控藏作用[J]. 岩性油气藏, 2021, 33(1): 46-56.
[5] 龙国徽, 王艳清, 朱超, 夏志远, 赵健, 唐鹏程, 房永生, 李海鹏, 张娜, 刘健. 柴达木盆地英雄岭构造带油气成藏条件与有利勘探区带[J]. 岩性油气藏, 2021, 33(1): 145-160.
[6] 田光荣, 王建功, 孙秀建, 李红哲, 杨魏, 白亚东, 裴明利, 周飞, 司丹. 柴达木盆地阿尔金山前带侏罗系含油气系统成藏差异性及其主控因素[J]. 岩性油气藏, 2021, 33(1): 131-144.
[7] 孔红喜, 王远飞, 周飞, 朱军, 陈阳阳, 宋德康. 鄂博梁构造带油气成藏条件分析及勘探启示[J]. 岩性油气藏, 2021, 33(1): 175-185.
[8] 袁纯, 张惠良, 王波. 大型辫状河三角洲砂体构型与储层特征——以库车坳陷北部阿合组为例[J]. 岩性油气藏, 2020, 32(6): 73-84.
[9] 田继先, 赵健, 张静, 孔骅, 房永生, 曾旭, 沙威, 王牧. 柴达木盆地英雄岭地区硫化氢形成机理及分布预测[J]. 岩性油气藏, 2020, 32(5): 84-92.
[10] 张道伟, 薛建勤, 伍坤宇, 陈晓冬, 王牧, 张庆辉, 郭宁. 柴达木盆地英西地区页岩油储层特征及有利区优选[J]. 岩性油气藏, 2020, 32(4): 1-11.
[11] 陈更新, 王建功, 杜斌山, 刘应如, 李艳丽, 杨会洁, 李志明, 俞晓峰. 柴达木盆地尖北地区裂缝性基岩气藏储层特征[J]. 岩性油气藏, 2020, 32(4): 36-47.
[12] 杨甫, 贺丹, 马东民, 段中会, 田涛, 付德亮. 低阶煤储层微观孔隙结构多尺度联合表征[J]. 岩性油气藏, 2020, 32(3): 14-23.
[13] 吴家洋, 吕正祥, 卿元华, 杨家静, 金涛. 致密油储层中自生绿泥石成因及其对物性的影响——以川中东北部沙溪庙组为例[J]. 岩性油气藏, 2020, 32(1): 76-85.
[14] 李翔, 王建功, 张平, 李琳, 黄成刚, 伍坤宇, 张庆辉, 龙伟. 柴达木盆地英西地区E32裂缝成因与油气地质意义[J]. 岩性油气藏, 2018, 30(6): 45-54.
[15] 王建功, 张道伟, 易定红, 袁剑英, 石亚军, 马新民, 高妍芳, 张平, 王鹏. 柴西地区下干柴沟组上段湖相碳酸盐岩沉积特征及相模式[J]. 岩性油气藏, 2018, 30(4): 1-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .