岩性油气藏 ›› 2018, Vol. 30 ›› Issue (4): 105–112.doi: 10.12108/yxyqc.20180412

• 油气田开发 • 上一篇    下一篇

注采井间优势通道的多层次模糊识别方法

黄斌1, 许瑞1, 傅程1,2, 张威1, 史振中1   

  1. 1. 东北石油大学 石油工程学院, 黑龙江 大庆 163318;
    2. 中国石油大庆油田有限责任公司博士后科研工作站, 黑龙江 大庆 163458
  • 收稿日期:2018-02-10 修回日期:2018-04-03 出版日期:2018-07-21 发布日期:2018-07-21
  • 第一作者:黄斌(1982-),男,博士,教授,主要从事剩余油分布规律及大孔道识别技术的科研与教学工作。地址:(163318)黑龙江省大庆市萨尔图区东北石油大学石油工程学院。Email:huangbin111@163.com
  • 通信作者: 傅程(1981-),女,博士,副教授,主要从事油藏数值模拟及聚驱渗流规律的教学与科研工作。Email:sygcxytyb@163.com。
  • 基金资助:
    黑龙江省博士后基金项目“聚驱后油层大孔道识别与调堵技术研究”(编号:LBH-Z16002)资助

Multi-level fuzzy identification method for interwell thief zone

HUANG Bin1, XU Rui1, FU Cheng1,2, ZHANG Wei1, SHI Zhenzhong1   

  1. 1. College of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China;
    2. Post-Doctoral Scientific Research Station, PetroChina Daqing Oilfield Company, Daqing 163458, Heilongjiang, China
  • Received:2018-02-10 Revised:2018-04-03 Online:2018-07-21 Published:2018-07-21

摘要: 为了正确识别并评价注采井间优势通道的发育情况,制定合适的调剖堵水措施,针对其识别过程的复杂性和模糊性,提出了基于层次分析法与模糊综合评价相结合的多层次模糊综合评价指标体系(AHP-FCE)。该评价指标体系包括3个评价对象子系统和25个评价指标,其中注采井间的连通性通过灰色关联度进行定量表征。将该模型应用于N油田S14层优势通道识别,建立了一级优势通道、次级优势通道、正常孔隙通道3种评价等级,利用熵权法确定各因素权重,选择半梯形隶属度函数计算隶属度矩阵,并根据最大隶属度原则对各注采方向进行了优势通道模糊综合评价。结果表明:共识别出一级优势通道16处、次级优势通道10处,高渗透层及注采关系不完善的井间优势通道发育明显;经过井间示踪剂法验证,识别准确率达87.5%。该方法合理准确,可为油田后期实施调剖堵水措施提供指导。

关键词: 侏罗系, 低频可控震源, 高密度, 宽方位, 宽频反演, 柴达木盆地

Abstract: In order to correctly identify and evaluate the development of the thief zone, and take appropriate blocking measures, considering the complexity and fuzziness of the identification process of the thief zone, a multi-level fuzzy comprehensive evaluation index system(AHP-FCE)based on AHP and fuzzy comprehensive evaluation method was proposed. The evaluation index system consists of three evaluation object subsystems and 25 evaluation indicators, and the interwell connectivity is represented by grey relational degree. The model was applied to the identification of the thief zone in the S14 layer of N oilfield, and three evaluation levels of primary thief zone, secondary thief zone and normal pore channel were established. The weight of each factor was determined by entropy weight method, and the membership degree matrix was calculated by choosing semi trapezoid membership function. According to the principle of maximum membership degree, the thief zone of each interwell was evaluated. The results show that there are 16 primary thief zone and 10 secondary thief zone, and the development of the thief zone is more obvious between the interwells with high permeability and imperfect well pattern relations. The identification results were verified by the well tracer method, and the accuracy rate was 87.5%. The results show that this method is reasonable and accurate, and can provide a clear guidance for profile control or water shut off in the later stage of oilfield.

Key words: Jurassic, low frequency vibroseis, high density, wide azimuth, broadband inversion, Qaidam Basin

中图分类号: 

  • TE122
[1] 辛治国, 贾俊山, 孙波. 优势流场发育阶段定量确定方法研究.西南石油大学学报(自然科学版), 2012, 34(2):119-124. XIN Z G, JIA J S, SUN B. Research on the quantitative determination of the dominant flow field development stages. Journal of Southwest Petroleum University(Science & Technology Edition), 2012, 34(2):119-124.
[2] 姜瑞峰, 高腾飞.高含水环境下优势通道渗流特征解析.石化技术, 2017, 24(1):179. JIANG R F, GAO T F. Seepage characteristics of dominant channels in high water cut reservoir. Petrochemical Technology, 2017, 24(1):179.
[3] 丁帅伟, 姜汉桥, 赵冀, 等.水驱砂岩油藏优势通道识别综述. 石油地质与工程, 2015, 29(5):132-136. DING S W, JIANG H Q, ZHAO J, et al. General description of preferential migration passage in water-flood sandstone reservoir. Petroleum Geology and Engineering, 2015, 29(5):132-136.
[4] 高慧梅, 姜汉桥, 陈民锋.疏松砂岩油藏大孔道识别的典型曲线方法.石油天然气学报, 2009, 31(1):108-111. GAO H M, JIANG H Q, CHEN M F. Typical curves of identification of high capacity channel in unconsolidated sand-stone oil reservoirs. Journal of Oil and Gas Technology, 2009, 31(1):108-111.
[5] 李国娟, 梁杰, 李薇.测井资料识别大孔道的方法研究.油气田地面工程, 2008, 27(9):11-12. LI G J, LIANG J, LI W. Research on the method of identifying high capacity channel by logging data. Oil-Gas Field Surface Engineering, 2008, 27(9):11-12.
[6] 贺承祖, 华明琪.储层孔隙结构的分形几何描述.石油与天然气地质, 1998, 19(1):15-23. HE C Z, HUA M Q. Fractal geometry description of reservoir pore structure. Oil & Gas Geology, 1998, 19(1):15-23.
[7] 郝金克.利用无因次压力指数定性识别优势通道.特种油气藏, 2014, 21(4):123-125. HAO J K. Qualitative identification of prevailing channel by dimensionless pressure index. Special Oil and Gas Reservoirs, 2014, 21(4):123-125.
[8] 刘洪.优势渗流通道的试井解释方法研究.石油地质与工程, 2015, 29(2):98-100. LIU H. Well testing interpretation method research of preferential seepage channels. Petroleum Geology and Engineering. 2015, 29(2):98-100.
[9] 王森, 冯其红, 宋玉龙, 等.基于吸水剖面资料的优势通道分类方法——以孤东油田为例. 油气地质与采收率, 2013, 20(5):99-102. WANG S, FENG Q H, SONG Y L, et al. Preferential flow path classification method based on injection profile data-taking Gudong oilfield as an example. Petroleum Geology and Recovery Efficiency, 2013, 20(5):99-102.
[10] IZGEC B, KABIR S. Identification and characterization of highconductive layers in waterfloods. SPE Reservoir Evaluation & Engineering, 2009, 14(1):113-119.
[11] BATYCKY R P, THIELE M R, BAKER R O. Revisiting reservoir flood-surveillance methods using streamlines. SPE Reservoir Evaluation & Engineering, 2008, 11(2):387-394.
[12] 汪玉琴, 陈方鸿, 顾鸿君, 等.利用示踪剂研究井间水流优势通道.新疆石油地质, 2011, 32(5):512-514. WANG Y Q, CHEN F H, GU H J, et al. Using tracer to study interwell water flow predominant channel. Xinjiang Petroleum Geology, 2011, 32(5):512-514.
[13] 王鸣川, 石成方, 朱维耀, 等.优势渗流通道识别与精确描述. 油气地质与采收率, 2016, 23(1):79-84. WANG M C, SHI C F, ZHU W Y, et al. Identification and accurately description of preponderance flow path. Petroleum Geology and Recovery Efficiency, 2016, 23(1):79-84.
[14] 马峥, 张春雷, 高世臣.主成分分析与模糊识别在岩性识别中的应用.岩性油气藏, 2017, 29(5):127-133. MA Z, ZHANG C L, GAO S C. Lithology identification based on principal component analysis and fuzzy recognition. Lithologic Reservoirs, 2017, 29(5):127-133.
[15] 史洪亮, 杨克明, 王同.川西坳陷须五段致密砂岩与泥页岩储层特征及控制因素.岩性油气藏, 2017, 29(4):38-46. SHI H L, YANG K M, WANG T. Characteristics and controlling factors of tight sandstone and shale reservoirs of the fifth member of Xujiahe Formation in the Western Sichuan Depression. Lithologic Reservoirs, 2017, 29(4):38-46.
[16] 杨希濮, 杨小丽, 刘钧, 等.一体化储层精细分类方法在非均质储层定量表征中的应用. 岩性油气藏, 2017, 29(1):124-129. YANG X P, YANG X L, LIU J, et al. Application of integrated reservoir classification method to the quantitative characterization of heterogeneity reservoir. Lithologic Reservoirs, 2017, 29(1):124-129.
[17] 张继红, 李承龙, 赵广.用灰色模糊综合评判方法识别聚驱后优势通道.大庆石油地质与开发, 2017, 36(1):104-108. ZHANG J H, LI C L, ZHAO G. Grey-fuzzy comprehensive evaluation method identifying the prevailing channel after the polymer flooding. Petroleum Geology and Oilfield Development in Daqing, 2017, 36(1):104-108.
[18] 赵鑫, 刘月田, 丁耀, 等.海上油田优势水流通道模糊综合识别模型.断块油气田, 2017, 24(1):91-95. ZHAO X, LIU Y T, DING Y, et al. Fuzzy comprehensive recognition model of dominant water channels in offshore oilfield. Fault-Block Oil & Gas Field, 2017, 24(1):91-95.
[19] 程启月.评测指标权重确定的结构熵权法.系统工程理论与实践, 2010, 30(7):1225-1228. CHENG Q Y. Structure entropy weight method to confirm the weight of evaluating index. Systems Engineering-Theory & Practice, 2010, 30(7):1225-1228.
[20] CHEN T Y, LI C H. Determining objective weights with intuitionistic fuzzy entropy measures:a comparative analysis. Information Sciences, 2010, 180(21):4207-4222.
[21] ERENSAL Y C, ONCAN T, DEMIRCAN M L. Determining key capabilities in technology management using fuzzy analytic hierarchy process:a case study of Turkey. Information Sciences, 2006, 176(18):2755-2770.
[22] 杨德相, 付广, 孙同文, 等.油源断裂优势通道输导油气能力综合评价方法及其应用.吉林大学学报(地球科学版), 2017, 47(6):1678-1686. YANG D X, FU G, SUN T W, et al. Comprehensive evaluation method and its application of oil carrying capacity through dominant channel of oil source fault. Journal of Jilin University (Earth Science Edition), 2017, 47(6):1678-1686.
[23] 陈红伟, 冯其红, 张先敏, 等.考虑优势通道发育的层状水驱油藏开发指标预测方法. 油气地质与采收率, 2017, 24(4):72-77. CHEN H W, FENG Q H, ZHANG X M, et al. A method of development index prediction for multi-layer water flooding reservoir with preferential flow path. Petroleum Geology and Recovery Efficiency, 2017, 24(4):72-77.
[24] 禹影.聚合物驱后油层优势渗流通道识别与治理.大庆石油地质与开发, 2017, 36(4):101-105. YU Y. Identification and control of the preferential seepage channels for the oil reservoirs after the polymer flooding. Petroleum Geology and Oilfield Development in Daqing, 2017, 36(4):101-105.
[25] 陈月明, 姜汉桥, 李淑霞.井间示踪剂监测技术在油藏非均质性描述中的应用.石油大学学报(自然科学版), 1994, 18(增刊1):1-7. CHEN Y M, JIANG H Q, LI S X. Application of well to well tracer test on reservoir heterogeneity description. Journal of China University of Petroleum, 1994, 18(Suppl 1):1-7.
[26] 李科星, 蒲万芬, 赵军, 等.疏松砂岩油藏大孔道识别综述.西南石油大学学报, 2007, 29(5):42-44. LI K X, PU W F, ZHAO J, et al. Summarization of identification of macro-pores in unconsolidated sand stone oil reservoir. Journal of Southwest Petroleum University, 2007, 29(5):42-44.
[1] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[2] 苟红光, 林潼, 房强, 张华, 李山, 程祎, 尤帆. 吐哈盆地胜北洼陷中下侏罗统水西沟群天文旋回地层划分[J]. 岩性油气藏, 2024, 36(6): 89-97.
[3] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[4] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[5] 张培军, 谢明贤, 罗敏, 张良杰, 陈仁金, 张文起, 乐幸福, 雷明. 巨厚膏盐岩形变机制解析及其对油气成藏的影响——以阿姆河右岸东部阿盖雷地区侏罗系为例[J]. 岩性油气藏, 2024, 36(6): 36-44.
[6] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[7] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[8] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[9] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[10] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[11] 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64.
[12] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[13] 王小娟, 陈双玲, 谢继容, 马华灵, 朱德宇, 庞小婷, 杨田, 吕雪莹. 川西南地区侏罗系沙溪庙组致密砂岩成藏特征及主控因素[J]. 岩性油气藏, 2024, 36(1): 78-87.
[14] 唐昱哲, 柴辉, 王红军, 张良杰, 陈鹏羽, 张文起, 蒋凌志, 潘兴明. 中亚阿姆河右岸东部地区侏罗系盐下碳酸盐岩储层特征及预测新方法[J]. 岩性油气藏, 2023, 35(6): 147-158.
[15] 岳世俊, 刘应如, 项燚伟, 王玉林, 陈汾君, 郑长龙, 景紫岩, 张婷静. 一种水侵气藏动态储量和水侵量计算新方法[J]. 岩性油气藏, 2023, 35(5): 153-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .