岩性油气藏 ›› 2018, Vol. 30 ›› Issue (4): 98104.doi: 10.12108/yxyqc.20180411
石战战1,2, 王元君2, 唐湘蓉2, 庞溯1, 池跃龙1,2
SHI Zhanzhan1,2, WANG Yuanjun2, TANG Xiangrong2, PANG Su1, CHI Yuelong1,2
摘要: 传统时频分析方法在储层预测中面临以下2个问题:受Heisenberg测不准原理或交叉项的影响,常难以满足分辨率要求;增加了信号的冗余度,频域采样率越高,信号冗余度越高,解释工作量就越大。为了解决这2个问题,提出基于时频域波形分类的储层预测方法,该方法通过同步提取变换对地震信号进行时频谱分解,相当于将复杂信号分解为一系列(不同频率和不同时移量的)简单波形的叠加,并对分解结果利用生成拓扑映射进行分类,进而通过测井、钻井资料标定波形分类结果。该方法能够有效检测地震信号波形变化、精细刻画储层形态。
中图分类号:
[1] 熊翥. 地层、岩性油气藏地震勘探方法与技术. 石油地球物理勘探, 2012, 47(1):1-18. XIONG Z. Seismic exploration for strati-lithologic reservoirs. Oil Geophysical Prospecting, 2012, 47(1):1-18. [2] ZHAO T,ROY A,JAYARAM V, et al. A comparison of classification techniques for seismic facies recognition. Interpretation, 2015, 3(4):SAE29-SAE58. [3] BOASHASH B. Time-frequency signal analysis and processing:a comprehensive reference. London:Academic Press, 2015. [4] 张猛刚, 洪忠, 窦玉坛, 等. 时频分析在苏里格地区含气性检测中的应用. 岩性油气藏, 2013, 25(5):76-80. ZHANG M G, HONG Z, DOU Y T, et al. Application of timefrequency analysis technology to the gas detection in Sulige area. Lithologic Reservoirs, 2013, 25(5):76-80. [5] 陈学华, 贺振华, 黄德济, 等.时频域油气储层低频阴影检测. 地球物理学报, 2009, 52(1):215-221. CHEN X H, HE Z H, HUANG D J, et al. Low frequency shadow detection of gas reservoirs in time-frequency domain. Chinese Journal of Geophysics, 2009, 52(1):215-221. [6] 王德营, 李振春, 王姣. S域时频滤波分析与改进. 石油物探, 2015, 54(4):396-403. WANG D Y, LI Z C, WANG J. The analysis and improvement on time-frequency filtering in S-transform domain. Geophysical Prospecting for Petroleum, 2015, 54(4):396-403. [7] 高刚, 李玉海, 桂志先, 等.基于广义S变换频散AVO属性提取方法研究.岩性油气藏, 2015, 27(4):84-88. GAO G, LI Y H, GUI Z X, et al. Abstraction of frequency-dependent AVO attributes based on generalized S transform. Lithologic Reservoirs, 2015, 27(4):84-88. [8] 陈胜, 欧阳永林, 曾庆才, 等.匹配追踪子波分解重构技术在气层检测中的应用. 岩性油气藏, 2014, 26(6):111-114. CHEN S, OUYANG Y L, ZENG Q C, et al. Application of matching pursuit wavelet decomposition and reconstruction technique to reservoir prediction and gas detection. Lithologic Reservoirs, 2014, 26(6):111-114. [9] LI Y D, ZHENG X D. Wigner-Ville distribution and its application in seismic attenuation estimation. Applied Geophysics, 2007, 4(4):245-254. [10] MANDIC D P, REHMAN N U, WU Z, et al. Empirical mode decomposition-based time-frequency analysis of multivariate signals:the power of adaptive data analysis. IEEE Signal Processing Magazine, 2013, 30(6):74-86. [11] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise. IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2011:4144-4147. [12] BATTISTA B, KNAPP C, MCGEE T, et al. Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data. Geophysics, 2007, 72(2):H29-H37. [13] CHEN Y, ZHOU C, YUAN J, et al. Applications of empirical mode decomposition in random noise attenuation of seismic data. Journal of Seismic Exploration, 2014, 23(6):481-495. [14] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition. IEEE Transactions on Signal Processing, 2014, 62(3):531-544. [15] GILLES J. Empirical wavelet transform. IEEE Transactions on Signal Processing, 2013, 61(16):3999-4010. [16] AUGER F, FLANDRIN P. Improving the readability of timefrequency and time-scale representations by the reassignment method. IEEE Transactions on Signal Processing, 1995, 43(5):1068-1089. [17] DAUBECHIES I, LU J, WU H T. Synchrosqueezed wavelet transforms:an empirical mode decomposition-like tool. Applied & Computational Harmonic Analysis, 2011, 30(2):243-261. [18] HERRERA R H, HAN J, MIRKO V D B. Applications of the synchrosqueezing transform in seismic time-frequency analysis. Geophysics, 2014, 79(3):V55-V64. [19] YU G, YU M, XU C. Synchroextracting transform. IEEE Transactions on Industrial Electronics, 2017, 64(10):8042-8054. [20] BALCH A H. Color sonagrams:a new dimension in seismic data interpretation. Geophysics, 1971, 36(6):1074-1098. [21] COLEOU T, POUPON M, AZBEL K. Unsupervised seismic facies classification:a review and comparison of techniques and implementation. The Leading Edge, 2003, 22(10):942-953. [22] GAO D. Application of three-dimensional seismic texture analysis with special reference to deep-marine facies discrimination and interpretation:Offshore Angola,west Africa. AAPG Bulletin, 2007, 91(12):1665-1683. [23] ROY A, DOWDELL B L, MARFURT K J. Characterizing a Mississippian tripolitic chert reservoir using 3 D unsupervised and supervised multiattribute seismic facies analysis:an example from Osage County, Oklahoma. Interpretation, 2013, 1(2):SB109-SB124. [24] KOHONEN T. Self-organizing maps. Berlin:Springer-Verlag, 1995. [25] VATANEN T, OSMALA M, RAIKO T, et al. Self-organization and missing values in SOM and GTM. Neurocomputing, 2015, 147(6/7):60-70. [26] GISBRECHT A, HAMMER B. Relevance learning in generative topographic mapping. Neurocomputing, 2011, 74(9):1351-1358. [27] BISHOP C, SVENSÉN M, WILLIAMS C. GTM:the generative topographic mapping. Neural Computation, 1998, 10(1):215-234. [28] WALLET B C, MATOS M C D, KWIATKOWSKI J T, et al. Latent space modeling of seismic data:an overview. The Leading Edge, 2009, 28(12):1454-1459. [29] ROY A, ROMERO-PELÁEZ A S, KWIATKOWSKI T J, et al. Generative topographic mapping for seismic facies estimation of a carbonate wash, Veracruz Basin, southern Mexico. Interpretation, 2014, 2(2):SA31-SA47. [30] LIU Y. Seismic"low frequency shadows"for gas sand reflection. Denver:SEG, 2004. |
[1] | 徐中波, 汪利兵, 申春生, 陈铭阳, 甘立琴. 渤海蓬莱19-3油田新近系明下段曲流河储层构型表征[J]. 岩性油气藏, 2023, 35(5): 100-107. |
[2] | 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新生界断层精细表征及地质意义[J]. 岩性油气藏, 2023, 35(4): 50-60. |
[3] | 张昌民, 张祥辉, ADRIAN J. Hartley, 冯文杰, 尹太举, 尹艳树, 朱锐. 分支河流体系分类初探[J]. 岩性油气藏, 2023, 35(4): 1-15. |
[4] | 马东烨, 陈宇航, 赵靖舟, 吴伟涛, 宋平, 陈梦娜. 鄂尔多斯盆地东部二叠系下石盒子组8段河流相砂体构型要素[J]. 岩性油气藏, 2023, 35(1): 63-73. |
[5] | 任梦怡, 胡光义, 范廷恩, 范洪军. 秦皇岛32-6油田北区新近系明化镇组下段复合砂体构型及控制因素[J]. 岩性油气藏, 2022, 34(6): 141-151. |
[6] | 孟智强, 葛丽珍, 祝晓林, 王永平, 朱志强. 气顶边水油藏气/水驱产油量贡献评价方法[J]. 岩性油气藏, 2022, 34(5): 162-170. |
[7] | 李晓辉, 杜晓峰, 官大勇, 王志萍, 王启明. 辽东湾坳陷东北部新近系馆陶组辫曲过渡型河流沉积特征[J]. 岩性油气藏, 2022, 34(3): 93-103. |
[8] | 易志凤, 张尚锋, 王雅宁, 徐恩泽, 赵韶华, 王玉瑶. 差异曲率下的曲流河点坝砂体定量表征——以黄河源区白河现代沉积为例[J]. 岩性油气藏, 2022, 34(1): 34-42. |
[9] | 张皓宇, 李茂, 康永梅, 吴泽民, 王广. 鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征[J]. 岩性油气藏, 2021, 33(6): 177-188. |
[10] | 王静怡, 周志军, 魏华彬, 崔春雪. 基于页岩孔隙网络模型的油水两相流动模拟[J]. 岩性油气藏, 2021, 33(5): 148-154. |
[11] | 王立辉, 夏惠芬, 韩培慧, 曹瑞波, 孙先达, 张思琪. 剩余油分布的微观特征及其可动用程度的定量表征[J]. 岩性油气藏, 2021, 33(2): 147-154. |
[12] | 邓猛, 邵英博, 赵军寿, 廖辉, 邓琪. 渤海A油田明化镇组下段河-坝砂体储层构型及剩余油分布[J]. 岩性油气藏, 2020, 32(6): 154-163. |
[13] | 吕文睿, 张峰, 纪友亮, 周勇, 罗妮娜, 张艺楼, 梁星如, 程煜宗. 饶阳凹陷大王庄地区沙一上亚段河口坝结构对油藏开发的影响[J]. 岩性油气藏, 2020, 32(4): 143-154. |
[14] | 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154. |
[15] | 涂乙, 王亚会, 闫正和, 高永明, 魏启任. 基于构型单元“势控论”研究与剩余油开发效果分析[J]. 岩性油气藏, 2019, 31(4): 133-140. |
|