岩性油气藏 ›› 2018, Vol. 30 ›› Issue (4): 98–104.doi: 10.12108/yxyqc.20180411

• 技术方法 • 上一篇    下一篇

一种基于时频域波形分类的储层预测方法

石战战1,2, 王元君2, 唐湘蓉2, 庞溯1, 池跃龙1,2   

  1. 1. 成都理工大学 工程技术学院, 四川 乐山 614000;
    2. 成都理工大学 地球物理学院, 成都 610059
  • 收稿日期:2018-01-20 修回日期:2018-03-15 出版日期:2018-07-21 发布日期:2018-07-21
  • 作者简介:石战战(1986-),男,成都理工大学地球物理学院在读博士研究生,讲师,主要从事储层预测方面的科研和教学工作。地址:(614000)四川省乐山市市中区肖坝路222号成都理工大学工程技术学院资源勘查与土木工程系。Email:shizhanzh@163.com。
  • 基金资助:
    国家自然科学基金项目“孔隙介质低频地震衰减与频散异常的识别机理及应用”(编号:41374134)、“复杂地震信号分数域频谱成像理论及应用研究”(编号:41274127)及四川省教育厅项目“基于时频域波形分类的礁滩储层预测方法研究”(编号:16ZB0410)联合资助

Reservoir prediction based on seismic waveform classification in time-frequency domain

SHI Zhanzhan1,2, WANG Yuanjun2, TANG Xiangrong2, PANG Su1, CHI Yuelong1,2   

  1. 1. The Engineering and Technical College, Chengdu University of Technology, Leshan 614000, Sichuan, China;
    2. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
  • Received:2018-01-20 Revised:2018-03-15 Online:2018-07-21 Published:2018-07-21

摘要: 传统时频分析方法在储层预测中面临以下2个问题:受Heisenberg测不准原理或交叉项的影响,常难以满足分辨率要求;增加了信号的冗余度,频域采样率越高,信号冗余度越高,解释工作量就越大。为了解决这2个问题,提出基于时频域波形分类的储层预测方法,该方法通过同步提取变换对地震信号进行时频谱分解,相当于将复杂信号分解为一系列(不同频率和不同时移量的)简单波形的叠加,并对分解结果利用生成拓扑映射进行分类,进而通过测井、钻井资料标定波形分类结果。该方法能够有效检测地震信号波形变化、精细刻画储层形态。

关键词: 曲流河, 隔夹层, 开发中后期, 剩余油, 挖潜, 秦皇岛油田

Abstract: There are two problems in the reservoir prediction:(1)The traditional time-frequency analysis method is influenced by Heisenberg uncertainty principle or cross-terms,so it is often difficult to meet the requirements of high resolution.(2)The traditional time-frequency analysis method increases the redundancy of signal and increases the interpretation workload. Aiming at these two problems,a reservoir prediction method based on timefrequency domain seismic waveform classification was proposed. This method performs time-frequency decomposition of seismic signal by synchroextracting transform,and it corresponds to decomposing the complex signals into a series of simple waveforms(different frequencies and time shifts)superimposed. The decomposition results were classified by generative topographic mapping,and the waveform classification results were further calibrated by logging and drilling data. The practical applications indicate that the seismic signal waveform changes can be effectively detected by the reservoir prediction method combined with the synchroextracting transform and the generative topographic mapping.

Key words: meandering river, interlayer, middle-late stage of development, remaining oil, tapping the potential, Qinhuangdao oilfield

中图分类号: 

  • TE132.1+4
[1] 熊翥. 地层、岩性油气藏地震勘探方法与技术. 石油地球物理勘探, 2012, 47(1):1-18. XIONG Z. Seismic exploration for strati-lithologic reservoirs. Oil Geophysical Prospecting, 2012, 47(1):1-18.
[2] ZHAO T,ROY A,JAYARAM V, et al. A comparison of classification techniques for seismic facies recognition. Interpretation, 2015, 3(4):SAE29-SAE58.
[3] BOASHASH B. Time-frequency signal analysis and processing:a comprehensive reference. London:Academic Press, 2015.
[4] 张猛刚, 洪忠, 窦玉坛, 等. 时频分析在苏里格地区含气性检测中的应用. 岩性油气藏, 2013, 25(5):76-80. ZHANG M G, HONG Z, DOU Y T, et al. Application of timefrequency analysis technology to the gas detection in Sulige area. Lithologic Reservoirs, 2013, 25(5):76-80.
[5] 陈学华, 贺振华, 黄德济, 等.时频域油气储层低频阴影检测. 地球物理学报, 2009, 52(1):215-221. CHEN X H, HE Z H, HUANG D J, et al. Low frequency shadow detection of gas reservoirs in time-frequency domain. Chinese Journal of Geophysics, 2009, 52(1):215-221.
[6] 王德营, 李振春, 王姣. S域时频滤波分析与改进. 石油物探, 2015, 54(4):396-403. WANG D Y, LI Z C, WANG J. The analysis and improvement on time-frequency filtering in S-transform domain. Geophysical Prospecting for Petroleum, 2015, 54(4):396-403.
[7] 高刚, 李玉海, 桂志先, 等.基于广义S变换频散AVO属性提取方法研究.岩性油气藏, 2015, 27(4):84-88. GAO G, LI Y H, GUI Z X, et al. Abstraction of frequency-dependent AVO attributes based on generalized S transform. Lithologic Reservoirs, 2015, 27(4):84-88.
[8] 陈胜, 欧阳永林, 曾庆才, 等.匹配追踪子波分解重构技术在气层检测中的应用. 岩性油气藏, 2014, 26(6):111-114. CHEN S, OUYANG Y L, ZENG Q C, et al. Application of matching pursuit wavelet decomposition and reconstruction technique to reservoir prediction and gas detection. Lithologic Reservoirs, 2014, 26(6):111-114.
[9] LI Y D, ZHENG X D. Wigner-Ville distribution and its application in seismic attenuation estimation. Applied Geophysics, 2007, 4(4):245-254.
[10] MANDIC D P, REHMAN N U, WU Z, et al. Empirical mode decomposition-based time-frequency analysis of multivariate signals:the power of adaptive data analysis. IEEE Signal Processing Magazine, 2013, 30(6):74-86.
[11] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise. IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2011:4144-4147.
[12] BATTISTA B, KNAPP C, MCGEE T, et al. Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data. Geophysics, 2007, 72(2):H29-H37.
[13] CHEN Y, ZHOU C, YUAN J, et al. Applications of empirical mode decomposition in random noise attenuation of seismic data. Journal of Seismic Exploration, 2014, 23(6):481-495.
[14] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
[15] GILLES J. Empirical wavelet transform. IEEE Transactions on Signal Processing, 2013, 61(16):3999-4010.
[16] AUGER F, FLANDRIN P. Improving the readability of timefrequency and time-scale representations by the reassignment method. IEEE Transactions on Signal Processing, 1995, 43(5):1068-1089.
[17] DAUBECHIES I, LU J, WU H T. Synchrosqueezed wavelet transforms:an empirical mode decomposition-like tool. Applied & Computational Harmonic Analysis, 2011, 30(2):243-261.
[18] HERRERA R H, HAN J, MIRKO V D B. Applications of the synchrosqueezing transform in seismic time-frequency analysis. Geophysics, 2014, 79(3):V55-V64.
[19] YU G, YU M, XU C. Synchroextracting transform. IEEE Transactions on Industrial Electronics, 2017, 64(10):8042-8054.
[20] BALCH A H. Color sonagrams:a new dimension in seismic data interpretation. Geophysics, 1971, 36(6):1074-1098.
[21] COLEOU T, POUPON M, AZBEL K. Unsupervised seismic facies classification:a review and comparison of techniques and implementation. The Leading Edge, 2003, 22(10):942-953.
[22] GAO D. Application of three-dimensional seismic texture analysis with special reference to deep-marine facies discrimination and interpretation:Offshore Angola,west Africa. AAPG Bulletin, 2007, 91(12):1665-1683.
[23] ROY A, DOWDELL B L, MARFURT K J. Characterizing a Mississippian tripolitic chert reservoir using 3 D unsupervised and supervised multiattribute seismic facies analysis:an example from Osage County, Oklahoma. Interpretation, 2013, 1(2):SB109-SB124.
[24] KOHONEN T. Self-organizing maps. Berlin:Springer-Verlag, 1995.
[25] VATANEN T, OSMALA M, RAIKO T, et al. Self-organization and missing values in SOM and GTM. Neurocomputing, 2015, 147(6/7):60-70.
[26] GISBRECHT A, HAMMER B. Relevance learning in generative topographic mapping. Neurocomputing, 2011, 74(9):1351-1358.
[27] BISHOP C, SVENSÉN M, WILLIAMS C. GTM:the generative topographic mapping. Neural Computation, 1998, 10(1):215-234.
[28] WALLET B C, MATOS M C D, KWIATKOWSKI J T, et al. Latent space modeling of seismic data:an overview. The Leading Edge, 2009, 28(12):1454-1459.
[29] ROY A, ROMERO-PELÁEZ A S, KWIATKOWSKI T J, et al. Generative topographic mapping for seismic facies estimation of a carbonate wash, Veracruz Basin, southern Mexico. Interpretation, 2014, 2(2):SA31-SA47.
[30] LIU Y. Seismic"low frequency shadows"for gas sand reflection. Denver:SEG, 2004.
[1] 王立辉, 夏惠芬, 韩培慧, 曹瑞波, 孙先达, 张思琪. 剩余油分布的微观特征及其可动用程度的定量表征[J]. 岩性油气藏, 2021, 33(2): 147-154.
[2] 邓猛, 邵英博, 赵军寿, 廖辉, 邓琪. 渤海A油田明化镇组下段河-坝砂体储层构型及剩余油分布[J]. 岩性油气藏, 2020, 32(6): 154-163.
[3] 吕文睿, 张峰, 纪友亮, 周勇, 罗妮娜, 张艺楼, 梁星如, 程煜宗. 饶阳凹陷大王庄地区沙一上亚段河口坝结构对油藏开发的影响[J]. 岩性油气藏, 2020, 32(4): 143-154.
[4] 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154.
[5] 涂乙, 王亚会, 闫正和, 高永明, 魏启任. 基于构型单元“势控论”研究与剩余油开发效果分析[J]. 岩性油气藏, 2019, 31(4): 133-140.
[6] 印森林, 陈恭洋, 陈玉琨, 吴小军. 砂砾岩储层孔隙结构模态控制下的剩余油分布——以克拉玛依油田七东1区克下组为例[J]. 岩性油气藏, 2018, 30(5): 91-102.
[7] 赖书敏. 特高含水后期油藏细分注水界限研究——以胜利油田整装油藏为例[J]. 岩性油气藏, 2018, 30(5): 124-130.
[8] 常海燕, 严耀祖, 陈更新, 郭宁, 项燚伟, 杨会洁. 近岸水下扇储层构型及剩余油分布模式——以柴达木盆地七个泉油田E31油藏为例[J]. 岩性油气藏, 2018, 30(3): 143-152.
[9] 甘立琴, 苏进昌, 谢岳, 李超, 何康, 来又春. 曲流河储层隔夹层研究——以秦皇岛32-6油田为例[J]. 岩性油气藏, 2017, 29(6): 128-134.
[10] 张辉, 吴子瑾, 周伟, 于兴河, 孙乐, 胡勇, 谭程鹏. 北部湾盆地WZA区流一上亚段源-汇分析及沉积相展布[J]. 岩性油气藏, 2017, 29(5): 55-66.
[11] 刘超, 李云鹏, 张伟, 冯海潮, 王颍超. 渤海海域A油田夹层控制下的剩余油分布模式[J]. 岩性油气藏, 2017, 29(5): 148-154.
[12] 张建兴, 林承焰, 张宪国, 孙志峰, 陈家昀. 基于储层构型与油藏数值模拟的点坝储层剩余油分布研究[J]. 岩性油气藏, 2017, 29(4): 146-153.
[13] 朱茂, 朱筱敏, 曾洪流, 董艳蕾, 刘畅, 郑荣华. 冀中坳陷饶阳凹陷浅水曲流河三角洲沉积体系——以赵皇庄—肃宁地区沙一段为例[J]. 岩性油气藏, 2017, 29(2): 59-67.
[14] 胡浩. 基于砂体结构的剩余油挖潜调整措施研究[J]. 岩性油气藏, 2016, 28(4): 111-120.
[15] 唐 武,王英民,仲米虹 . 隆后坳陷区三角洲沉积特征及演化模式—— — 以桑塔木地区为例[J]. 岩性油气藏, 2016, 28(3): 34-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .