岩性油气藏 ›› 2018, Vol. 30 ›› Issue (4): 91–97.doi: 10.12108/yxyqc.20180410

• 技术方法 • 上一篇    下一篇

井震联合网格层析各向异性速度建模研究及应用

韩令贺, 胡自多, 冯会元, 刘威, 杨哲, 王艳香   

  1. 中国石油勘探开发研究院 西北分院, 兰州 730020
  • 收稿日期:2017-09-13 修回日期:2018-01-16 出版日期:2018-07-21 发布日期:2018-07-21
  • 作者简介:韩令贺(1987-),男,硕士,工程师,主要从事地震速度建模及成像方法等方面的研究工作。地址:(730020)甘肃省兰州市城关区雁儿湾路535号。Email:han_lh@petrochina.com.cn。
  • 基金资助:
    国家重点研发计划项目“面向E级计算的能源勘探高性能应用软件系统与示范”(编号:2017YFB0202905)资助

Grid tomography based on well-to-seismic integration in anisotropic velocity modeling and its application

HAN Linghe, HU Ziduo, FENG Huiyuan, LIU Wei, YANG Zhe, WANG Yanxiang   

  1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China
  • Received:2017-09-13 Revised:2018-01-16 Online:2018-07-21 Published:2018-07-21

摘要: 各向异性速度场及参数场的建立是各向异性叠前深度偏移技术在地震资料处理过程中取得成功的关键环节。井震联合求取各向异性参数是目前地震资料处理时常用的方法之一,但常规井震联合法通过对比地层厚度来求取各向异性参数,计算精度较低,达不到地质要求。将网格层析技术应用于三维VTI介质井震联合各向异性速度建模中,沿射线路径同时更新每个网格点的各向异性速度和参数,并通过多次迭代进一步提高速度模型的精度。应用结果表明,相较于常规井震联合法,基于网格层析的井震联合法能大幅提高各向异性速度场和参数场的计算精度,增强深度偏移结果与测井资料的吻合度,并且使得共成像点道集的远偏移距更加平直,为叠前反演提供更丰富的远偏移距信息,同时还能有效改善局部成像效果。

关键词: 低渗透油藏, CO2吞吐, 浓度扩散, 流体性质非均质性, 应力敏感, 试井模型

Abstract: Estimation of anisotropic velocity and parameter is a key technology in the success of anisotropic prestack depth migration in real seismic data processing. It is one of the commonly used methods to calculate the anisotropic parameters by well-to-seismic integration for seismic data processing at present. The conventional well-to-seismic integration method can be used to obtain anisotropic parameters by comparing the formation thickness,but the accuracy is low and cannot meet the geological requirements. Grid tomography based on wellto-seismic integration was applied to anisotropic velocity modeling in 3D VTI media. The anisotropic velocity and parameters of each grid were updated along the ray path,and the accuracy of velocity model was further improved by iterative calculation. The application results show that compared with conventional well-to-seismic integration method,grid tomography based on well-to-seismic integration can greatly improve the precision of anisotropic velocity and parameters and enhance the consistency of depth migration results and well logging data. Moreover,the common imaging point gather of long offset is more flatten,which can provide more information of long offset for prestack inversion, and the local imaging effect of the migration results is also improved effectively.

Key words: low permeability reservoir, CO2 huff and puff, concentration diffusion, fluid property heterogeneity, stress sensitivity, well test model

中图分类号: 

  • P631.4
[1] 李凡异, 狄帮让, 魏建新, 等.溶洞体宽度对偏移剖面反射振幅影响的定量研究.岩性油气藏, 2016, 28(5):113-116. LI F Y, DI B R, WEI J X, et al. Quantitative study of the effect of cavern width on reflection amplitude of migrationsection. Lithologic Reservoirs, 2016, 28(5):113-116.
[2] 魏新善, 胡爱平, 赵会涛, 等.致密砂岩气地质认识新进展. 岩性油气藏, 2017, 29(1):11-20. WEI X S, HU A P, ZHAO H T, et al. New geological understanding of tight sandstone gas. Lithologic Reservoirs, 2017, 29(1):11-20.
[3] ZHANG Y, ZHANG H Z, ZHANG G Q. A stable TTI reverse time migration and its implementation. Geophysics, 2011, 76(3):WA3-WA11.
[4] THOMAS M, MOTHI S, MCGILL P. Improving subsalt images using tilted-Orthorhombic RTM in Green Canyon, Gulf of Mexico. 82th Annual Meeting, SEG Expanded Abstracts, 2012:693-697.
[5] 陈可洋.逆时成像技术在大庆探区复杂构造成像中的应用. 岩性油气藏, 2017, 29(6):91-100. CHEN K Y. Application of reverse-time migration technology to complex structural imaging in Daqing exploration area. Lithologic Reservoirs, 2017, 29(6):91-100.
[6] THOMSEN L. Weak elastic anisotropy. Geophysics, 1986, 51(10):1954-1966.
[7] ALKHALIFAH T, TSVANKIN I. Velocity analysis for transversely isotropic media. Geophysics, 1995, 60(5):1550-1566.
[8] ALKHALIFAH T. Velocity analysis using nonhyperbolic moveout in transversely isotropic media. Geophysics, 1997, 62(6):1839-1854.
[9] GRECHKA V, TSVANKIN I. Feasibility of nonhyperbolic moveout inversion in transversely isotropic media. Geophysics, 1998, 63(3):957-969.
[10] DEWANGAN P,TSVANKIN I. Velocity-independent layer stripping of PP and PS reflection traveltimes. Geophysics, 2006, 71(4):U59-U65.
[11] WANG X X, TSVANKIN I. Estimation of interval anisotropy parameters using velocity-independent layer stripping. Geophysics, 2009, 74(5):WB117-WB127.
[12] BACHRACH R, OSYPOV K, NICHOLS D, et al. Applications of deterministic and stochastic rock physics modelling to anisotropic velocity model building. Geophysical Prospecting, 2013, 61(2):404-415.
[13] 杜丽英, 杜丽娟, 肖乾华, 等. VTI介质中弹性参数地震反演方法.石油勘探与开发, 2002, 29(3):59-63. DU L Y, DU L J, XIAO Q H, et al. A new approach to seismic inversion of elastic parameters for VTI media. Petroleum Exploration and Development, 2002, 29(3):59-63.
[14] PRIEUX V, BROSSIER R, GHOLAMI Y, et al. On the footprint of anisotropy on isotropic full waveform inversion:the Valhallcase study. Geophysical Journal International, 2011, 187(3):1495-1515.
[15] ZHANG Z, LIN G, CHEN J, et al. Inversion for elliptically anisotropicvelocity using VSP reflection traveltimes. Geophysical Prospecting, 2003, 51(2):159-166.
[16] 刘茂诚. 一个各向异性速度分析应用实例. 石油地球物理勘探, 2010, 45(4):525-529. LIU M C. An application case study for anisotropic velocity analysis. Oil Geophysical Prospecting, 2010, 45(4):525-529.
[1] 代波, 王磊飞, 庄建, 袁维彬, 王学生. 超低渗透油藏CO2驱最小混相压力实验[J]. 岩性油气藏, 2020, 32(2): 129-133.
[2] 张意超, 陈民锋, 屈丹, 毛梅芬, 杨子由. X油田特低渗透油藏井网加密效果预测方法[J]. 岩性油气藏, 2020, 32(1): 144-151.
[3] 周瑞, 苏玉亮, 马兵, 张琪, 王文东. 随机分形体积压裂水平井CO2吞吐模拟[J]. 岩性油气藏, 2020, 32(1): 161-168.
[4] 姜瑞忠, 张福蕾, 崔永正, 潘红, 张旭, 张春光, 沈泽阳. 考虑应力敏感和复杂运移的页岩气藏压力动态分析[J]. 岩性油气藏, 2019, 31(4): 149-156.
[5] 姬靖皓, 席家辉, 曾凤凰, 杨啟桂. 致密油藏分段多簇压裂水平井非稳态产能模型[J]. 岩性油气藏, 2019, 31(4): 157-164.
[6] 姜瑞忠, 沈泽阳, 崔永正, 张福蕾, 张春光, 原建伟. 双重介质低渗油藏斜井压力动态特征分析[J]. 岩性油气藏, 2018, 30(6): 131-137.
[7] 殷代印, 项俊辉, 王东琪. 大庆油田长垣外围特低渗透扶杨油层综合分类[J]. 岩性油气藏, 2018, 30(1): 150-154.
[8] 李友全, 韩秀虹, 阎燕, 张德志, 周志为, 孟凡坤. 低渗透油藏CO2吞吐压力响应曲线分析[J]. 岩性油气藏, 2017, 29(6): 119-127.
[9] 陈明强, 王宁, 张阳, 任龙. 渭北油田浅层油藏产能预测方法[J]. 岩性油气藏, 2017, 29(5): 134-139.
[10] 周游, 李治平, 景成, 谷潇雨, 孙威, 李晓. 基于“岩石物理相-流动单元”测井响应定量评价特低渗透油藏优质储层——以延长油田东部油区长6油层组为例[J]. 岩性油气藏, 2017, 29(1): 116-123.
[11] 袁淋,李晓平,刘建军. 低渗透气藏气水同产压裂水平井产能计算方法[J]. 岩性油气藏, 2016, 28(4): 88-94.
[12] 李友全,孟凡坤,阎燕,韩凤蕊,于伟杰,周诗雨. 考虑流体非均质性的低渗透油藏CO2驱试井分析[J]. 岩性油气藏, 2016, 28(4): 106-112.
[13] 袁 淋,王朝明,李晓平,胡新佳,曾 力. 致密砂岩气藏气水同产水平井产能公式推导及应用[J]. 岩性油气藏, 2016, 28(3): 121-126.
[14] 张美玲,祁 蒙,林丽丽 . 大庆外围油田特低渗透油藏水淹层综合评价方法[J]. 岩性油气藏, 2016, 28(2): 93-100.
[15] 马勇新,雷 霄,张乔良,孟令强. 低渗透油藏有效渗透率计算新模型—— — 以珠江口盆地海相低渗透砂岩为例[J]. 岩性油气藏, 2016, 28(1): 117-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .