岩性油气藏 ›› 2019, Vol. 31 ›› Issue (4): 149–156.doi: 10.12108/yxyqc.20190416

• 石油工程 • 上一篇    下一篇

考虑应力敏感和复杂运移的页岩气藏压力动态分析

姜瑞忠1, 张福蕾1, 崔永正1, 潘红2, 张旭1, 张春光1, 沈泽阳1   

  1. 1. 中国石油大学(华东)石油工程学院, 山东 青岛 266580;
    2. 中国石油大港油田分公司 采油工艺研究院, 天津 300280
  • 收稿日期:2018-11-12 修回日期:2019-02-06 出版日期:2019-07-21 发布日期:2019-06-21
  • 作者简介:姜瑞忠(1964-),男,博士,教授,博士生导师,主要从事油气田开发方面的教学与研究工作。地址:(266580)山东省青岛市黄岛区长江西路66号中国石油大学(华东)。Email:19870005@upc.edu.cn。
  • 基金资助:
    国家自然科学基金项目"致密储层体积压裂缝网扩展模拟研究"(编号:51574265)、国家重大科技专项"厚层非均质气藏产能评价及预测技术"(编号:2016ZX05027004-004)和"低渗、特低渗油藏水驱扩大波及体积方法与关键技术"(编号:2017ZX05013-002)联合资助

Pressure dynamic analysis of shale gas reservoirs considering stress sensitivity and complex migration

JIANG Ruizhong1, ZHANG Fulei1, CUI Yongzheng1, PAN Hong2, ZHANG Xu1, ZHANG Chunguang1, SHEN Zeyang1   

  1. 1. School of Petroleum Engineering, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    2. Research Institute of Oil Production Technology, PetroChina Dagang Oilfield Company, Tianjin 300280, China
  • Received:2018-11-12 Revised:2019-02-06 Online:2019-07-21 Published:2019-06-21

摘要: 页岩气藏渗透率极低,储层存在很强的应力敏感性,所以需对其进行水力压裂。通过分析吸附解吸、Knudsen扩散、非稳态窜流和渗流等多种气体运移机制来建立页岩气藏复合模型,采用Mathieu函数、Pedrosa变量代换、正则摄动理论、拉普拉斯变换和Stehfest数值反演等方法来求解数学模型,并绘制出无因次拟压力曲线,同时对渗透率模量、SRV半径、外区裂缝渗透率、扩散系数和解吸压缩系数等相关参数进行敏感性分析。结果显示:气体流动阶段可划分为9段,渗透率模量的增加导致气井定产量生产时所需压差增大,而SRV半径和解吸压缩系数的增大使得压差减小;较大的外区裂缝渗透率与较小的流度比相对应,扩散系数越大,页岩基质表观渗透率越大,窜流发生的越早。提出的试井模型可提高页岩气藏压力动态分析的准确性,对压裂开发页岩气藏具有一定的理论指导意义。

关键词: 页岩气, 复合模型, 压力, 应力敏感, 椭圆SRV, 压裂井

Abstract: The permeability of shale gas reservoirs is extremely low,and the formation is stress-sensitive strongly. The hydraulic fracturing is one of the effective exploitation methods. A composite shale gas reservoir model was established by introducing some gas migration mechanisms,such as shale gas adsorption and desorption,Knudsen diffusion,unsteady cross flow and seepage. Mathieu function,Pedrosa variable substitution,regular perturbation theory,Laplace transform and Stehfest numerical inversion methods were used to solve the mathematical model,and then the typical curves of dimensionless pseudo-pressure were plotted. The sensitivity analyses were conducted on the relevant parameters,such as permeability modulus,SRV radius,outer region fracture permeability,diffusion coefficient and desorption compressibility. The results show that the gas flow can be divided into nine stages. A larger permeability modulus resulted in a larger pressure difference required for gas well constant production. The larger the SRV radius and the desorption compressibility are,the smaller the pressure difference is. The larger fracture permeability in outer zone corresponds to a smaller mobility ratio. The larger the diffusion coefficient is,the larger the apparent permeability of the shale matrix is,and the earlier the cross flow occurs. The proposed well test model can improve the accuracy of pressure dynamic analysis of shale gas reservoirs and has certain theoretical guiding significance for fracturing development of shale gas reservoirs.

Key words: shale gas, composite model, pressure, stress sensitivity, elliptical SRV, fractured well

中图分类号: 

  • TE348
[1] 张小龙,张同伟,李艳芳,等.页岩气勘探和开发进展综述. 岩性油气藏,2013,25(2):116-122. ZHANG X L,ZHANG T W,LI Y F,et al. Research advance in exploration and development of shale gas. Lithologic Reservoirs,2013,25(2):116-122.
[2] WORRALL F,WADE A J,DAVIES R J,et al. Setting the baseline for shale gas:Establishing effective sentinels for water quality impacts of unconventional hydrocarbon development. Journal of Hydrology,2019,571:516-527.
[3] 李智锋,李治平,苗丽丽,等.页岩气藏纳米孔隙气体渗流特征分析. 天然气地球科学,2013,24(5):1042-1047. LI Z F,LI Z P,MIAO L L,et al. Gas flow characteristics in nanoscale pores of shale gas. Natural Gas Geoscience,2013,24(5):1042-1047.
[4] 张烈辉,单保强,赵玉龙,等.页岩气藏表观渗透率和综合渗流模型建立. 岩性油气藏,2017,29(6):108-118. ZHANG L H,SHAN B Q,ZHAO Y L,et al. Establishment of apparent permeability model and seepage flow model for shale reservoir. Lithologic Reservoirs,2017,29(6):108-118.
[5] 王永辉,卢拥军,李永平,等.非常规储层压裂改造技术进展及应用.石油学报,2012,33(增刊1):149-158. WANG Y H,LU Y J,LI Y P,et al. Progress and application of hydraulic fracturing technology in unconventional reservoir. Acta Petrolei Sinica,2012,33(Suppl 1):149-158.
[6] CLARKSON C R. Production data analysis of unconventional gas wells:Review of theory and best practices. International Journal of Coal Geology,2013,109/110:101-146.
[7] 张驰. 涪陵页岩气田平桥区块深层气井压裂工艺优化与应用.岩性油气藏,2018,30(6):160-168. ZHANG C. Optimization and application of deep gas well fracturing in Pingqiao block of Fuling shale gas field. Lithologic Reservoirs,2018,30(6):160-168.
[8] 侯冰,陈勉,李志猛,等.页岩储集层水力裂缝网络扩展规模评价方法.石油勘探与开发,2014,41(6):763-768. HOU B,CHEN M,LI Z M,et al. Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs. Petroleum Exploration and Development,2014,41(6):763-768.
[9] 蒋廷学,王海涛,卞晓冰,等.水平井体积压裂技术研究与应用. 岩性油气藏,2018,30(3):1-11. JIANG T X,WANG H T,BIAN X B,et al. Volume fracturing technology for horizontal well and its application. Lithologic Reservoirs,2018,30(3):1-11.
[10] XIE J,YANG C D,GUPTA N,et al. Integration of shale-gasproduction data and microseismic for fracture and reservoir properties with the fast marching method. SPE Journal,2015,20(2):347-359.
[11] ZHANG Q,SU Y L,WANG W D,et al. Performance analysis of fractured wells with elliptical SRV in shale reservoirs. Journal of Natural Gas Science and Engineering,2017,45:380-390.
[12] 姜瑞忠,滕文超,徐建春.压裂改造复合页岩气藏不稳定压力与产量分析方法. 天然气工业,2015,35(9):42-47. JIANG R Z,TENG W C,XU J C. Transient pressure and production analysis methods for composite shale gas reservoirs stimulated by fracturing. Natural Gas Industry,2015,35(9):42-47.
[13] 黄玲,曾立新,黄成惠,等. 页岩储层敏感性特征实验研究. 天然气技术与经济,2012,6(5):42-44. HUANG L,ZENG L X,HUANG C H,et al. Experimental study on fluid sensitivity of shale reservoir. Natural Gas Technology and Economy,2012,6(5):42-44.
[14] 尹洪军,赵二猛,王磊,等.考虑应力敏感的页岩气藏垂直裂缝井压力动态分析. 水动力学研究与进展,2015,30(4):412417. YIN H J,ZHAO E M,WANG L,et al. Pressure behavior analysis for vertical fractured well with stress sensitivity in shale gas reservoirs. Chinese Journal of Hydrodynamics,2015,30(4):412-417.
[15] 黄雨,李晓平,谭晓华. 三重介质复合气藏水平井不稳定产量递减动态分析. 天然气地球科学,2018,29(8):1190-1197. HUANG Y,LI X P,TAN X H. Research on rate decline analysis for horizontal well in triple-porosity composite reservoir. Natural Gas Geoscience,2018,29(8):1190-1197.
[16] DENG J,ZHU W Y,MA Q. A new seepage model for shale gas reservoir and productivity analysis of fractured well. Fuel,2014, 124:232-240.
[17] JIA Y L,FAN X Y,NIE R S,et al. Flow modeling of well test analysis for porous-vuggy carbonate reservoirs. Transport in Porous Media,2013,97(2):253-279.
[18] LANGMUIR I. The desorption of gases on plane surfaces of glass,mica and platinum. Journal of the American Chemical Society,1918,40(9):1361-1403.
[19] 郭平.低渗透致密砂岩气藏开发机理研究. 北京:石油工业出版社,2009. GUO P. Research on development mechanism of low permeability tight sandstone gas reservoir. Beijing:Petroleum Industry Press,2009.
[20] MCLACHLAN N W. Theory and application of mathieu functions. Oxford:Oxford University Press,1951.
[21] VAN EVERDINGEN A F,HURST W. The application of the Laplace transformation to flow problems in reservoirs. Journal of Petroleum Technology,1949,1(12):305-324.
[22] STEHFEST H. Algorithm 368:Numerical inversion of Laplace transforms. Communications of the ACM,1970,13(1):47-49.
[1] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[2] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[3] 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
[4] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[5] 郭永伟, 闫方平, 王晶, 褚会丽, 杨建雷, 陈颖超, 张笑洋. 致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征[J]. 岩性油气藏, 2021, 33(3): 153-161.
[6] 钟红利, 吴雨风, 闪晨晨. 北大巴山地区鲁家坪组页岩地球化学特征及勘探意义[J]. 岩性油气藏, 2020, 32(5): 13-22.
[7] 王建君, 李井亮, 李林, 马光春, 杜悦, 姜逸明, 刘晓, 于银华. 基于叠后地震数据的裂缝预测与建模——以太阳—大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5): 122-132.
[8] 余燕, 周琳琅, 甘笑非, 胡燕, 淦文杰, 邓庄. 二次压力梯度三孔渗流模型及非线性渗流特征[J]. 岩性油气藏, 2020, 32(5): 143-150.
[9] 符东宇, 李勇明, 赵金洲, 江有适, 陈曦宇, 许文俊. 基于REV尺度格子Boltzmann方法的页岩气藏渗流规律[J]. 岩性油气藏, 2020, 32(5): 151-160.
[10] 代波, 王磊飞, 庄建, 袁维彬, 王学生. 超低渗透油藏CO2驱最小混相压力实验[J]. 岩性油气藏, 2020, 32(2): 129-133.
[11] 王登, 余江浩, 赵雪松, 陈威, 黄佳琪, 徐聪. 四川盆地石柱地区自流井组页岩气成藏条件与勘探前景[J]. 岩性油气藏, 2020, 32(1): 27-35.
[12] 史文洋, 姚约东, 程时清, 顾少华, 石志良. 川西潮坪相裂缝型碳酸盐岩分层酸压井压力动态分析[J]. 岩性油气藏, 2020, 32(1): 152-160.
[13] 周瑞, 苏玉亮, 马兵, 张琪, 王文东. 随机分形体积压裂水平井CO2吞吐模拟[J]. 岩性油气藏, 2020, 32(1): 161-168.
[14] 陈相霖, 郭天旭, 石砥石, 侯啓东, 王超. 陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力[J]. 岩性油气藏, 2019, 31(5): 52-60.
[15] 王跃鹏, 刘向君, 梁利喜. 鄂尔多斯盆地延长组张家滩陆相页岩各向异性及能量演化特征[J]. 岩性油气藏, 2019, 31(5): 149-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .