岩性油气藏 ›› 2020, Vol. 32 ›› Issue (2): 129–133.doi: 10.12108/yxyqc.20200214

• 油气田开发 • 上一篇    下一篇

超低渗透油藏CO2驱最小混相压力实验

代波, 王磊飞, 庄建, 袁维彬, 王学生   

  1. 中国石油长庆油田分公司 第一采油厂, 陕西 延安 716000
  • 收稿日期:2019-03-20 修回日期:2019-09-02 出版日期:2020-03-21 发布日期:2020-01-19
  • 第一作者:代波(1987-),男,工程师,主要从事油田开发方面的研究工作。地址:(716000)陕西省延安市宝塔区河庄坪镇长庆油田分公司第一采油厂。Email:cqytdb@126.com。
  • 基金资助:
    国家重点基础研究发展计划“973”项目“陆上页岩油储集性能与流动机理”(编号:2014CB239103)资助

Experiment of minimum miscible pressure of CO2 flooding in ultra-low permeability reservoir

DAI Bo, WANG Leifei, ZHUANG Jian, YUAN Weibin, WANG Xuesheng   

  1. No.1 Oil Production Plant, PetroChina Changqing Oilfeild Company, Yan'an 71600, Shaanxi, China
  • Received:2019-03-20 Revised:2019-09-02 Online:2020-03-21 Published:2020-01-19

摘要: 利用常规方法测量超低渗透油藏CO2-原油最小混相压力时,存在测量周期长、工作量大等问题,且不能直接观察到CO2与原油的混相状态。为了确定杏河超低渗透油藏CO2-原油的最小混相压力,采用界面张力法对杏河油藏CO2和原油进行室内实验。结果表明:随着平衡压力的升高,原油中溶解CO2的量增多, CO2-原油之间界面张力的变化可分为2个阶段,且均呈逐渐减小的线性关系;当平衡压力从4 MPa增大到28 MPa时, CO2-原油之间的界面张力由17.72 mN/m降到1.56 mN/m。界面张力法测得杏河油藏最小混相压力值为22.5 MPa,略大于细管实验测得的最小混相压力值22.3 MPa,由于二者数值相差仅0.9%,表明界面张力法测量超低渗透油藏最小混相压力具有较好的准确性。通过上述研究,确定了杏河油藏最小混相压力,为杏河油藏注CO2增产开发方案的制定提供了理论支持,但是由于最小混相压力高于油藏目前压力(17.5 MPa),在目前油藏条件下CO2与原油不能实现混相。

关键词: 超低渗透油藏, 最小混相压力, 界面张力, 杏河油藏

Abstract: When measuring the minimum miscibility pressure (MMP) of CO2-crude in ultra-low permeability reservoirs,the conventional method has the problems of long measurement period and large workload,and the miscible state of CO2 and crude oil cannot be directly observed. To determine the MMP of CO2-crude oil in Xinghe ultra-low permeability reservoir quickly and accurately,the interfacial tension(IFT) method was used to conduct indoor experiments on CO2 and crude oil in Xinghe reservoir. The results show that with the increase of equilibrium pressure,the amount of CO2 dissolved in crude oil increases,and the IFT between CO2 and crude oil can be divided into two stages,and both decrease linearly. When the equilibrium pressure increases from 4 MPa to 28 MPa,the IFT between CO2 and crude oil decreases from 17.72 mN/m to 1.56 mN/m. The MMP of Xinghe reservoir measured by IFT method is 22.5 MPa,which is slightly higher than that of 22.3 MPa measured by thin tube experiment. The difference between the two values is only 0.9%,indicating that the IFT method has good accuracy in measuring the MMP of ultra-low permeability reservoir. Through the above research,the MMP of Xinghe reservoir was determined,which provides theoretical support for the development of the CO2 stimulation production plan for the Xin he reservoir. However,since the MMP is higher than the current reservoir pressure of 17.5 MPa, CO2 and crude oil can't achieve miscibility under current reservoir conditions.

Key words: ultra-low permeability reservoir, minimum miscibility pressure, interfacial tension, Xinghe reservoir

中图分类号: 

  • ET357.45
[1] 王欣, 赵法军, 刘江.低渗透油藏CO2驱最小混相压力实验研究.内蒙古石油化工, 2012, 38(12):11-13. WANG X, ZHAO F J, LIU J. The experimental study on minimum miscibility pressure of CO2 flooding in low permeability Reservoirs. Inner Mongolia Petrochemical Industry, 2012, 38(12):11-13.
[2] 孙丽丽, 李治平, 窦宏恩, 等.超低渗油藏CO2吞吐室内评价及参数优化.油田化学, 2018, 35(2):268-272. SUN L L, LI Z P, DOU H E, et al. Laboratory evaluation and parameter optimization of CO2 huff-n-puff in ultra-low permeability reservoirs. Oilfield Chemistry, 2018, 35(2):268-272.
[3] 郭茂雷, 黄春霞, 董小刚, 等. 延长油田超低渗透砂岩油藏CO2驱油机理研究.石油与天然气化工, 2018, 47(2):75-79. GUO M L, HUANG C X, DONG X G, et al. CO2 EOR mechanism of tight oil sandstone reservoir in Yanchang Oilfield. Chemical Engineering of Oil & Gas, 2018, 47(2):75-79.
[4] 赵凤兰, 张蒙, 侯吉瑞, 等.低渗透油藏CO2混相条件及近混相驱区域确定.油田化学, 2018, 35(2):273-277. ZHAO F L, ZHANG M, HOU J R, et al. Determination of CO2 miscible condition and near-miscible region flooding in low permeability reservoir. Oilfield Chemistry, 2018, 35(2):273-277.
[5] 商琳琳.龙虎泡油田高台子超低渗透油层CO2驱实验研究. 石油地质与工程, 2018, 32(5):60-62. SHANG L L. Experimental study on CO2 flooding in gaotaizi tight reservoir in longhubao oilfield. Petroleum Geology and Engineering, 2018, 32(5):60-62.
[6] 郑永旺.苏北低渗油藏CO2驱最小混相压力计算方法研究. 石油地质与工程, 2017, 31(2):101-104. ZHENG Y W. Study on the calculation method of CO2 flooding minimum miscible pressure in northern Jiangsu low permeability reservoir. Petroleum Geology and Engineering, 2017, 31(2):101-104.
[7] 李孟涛, 张英芝, 单文文, 等.大庆榆树林油田最小混相压力的确定.西南石油学院学报, 2006, 28(4):36-39. LI M T, ZHANG Y Z, SHAN W W, et al.Determination of minimum miscibility pressure in Yushulin oil field. Journal of Southwest Petroleum Institute, 2006, 28(4):36-39.
[8] 郝永卯, 薄启炜, 陈月明.CO2驱油实验研究.石油勘探与开发, 2005, 32(2):110-112. HAO Y M, BO Q W, CHEN Y M. Laboratory investigation of CO2 flooding. Petroleum Exploration and Development, 2005, 32(2):110-112.
[9] 许瀚元, 熊钰.细管实验法确定最小混相压力的方法.内江科技, 2012, 33(6):92-93. XU H Y, XIONG Y. Thin tube test method to determine the minimum miscibility pressure. Neijiang Science and Technology, 2012, 33(6):92-93.
[10] 肖啸, 宋昭峥.高含水期二氧化碳驱油室内探索.应用化工, 2013, 42(6):974-976. XIAO X, SONG Z Z. Indoor CO2 flooding explorations at the high water-cut stag. Applied Chemical Industry, 2013, 42(6):974-976.
[11] 汤勇, 赵雪梅, 汪洋.CO2驱最小混相压力影响因素研究.油气藏评价与开发, 2018, 8(4):42-45. TANG Y, ZHAO X M, WANG Y. Analysis of influence factor of minimum miscible pressure of CO2 flooding. Reservoir Evaluation and Development, 2018, 8(4):42-45.
[12] 滕加丰.CO2-原油最小混相压力实验研究.价值工程, 2010, 29(3):31-32. TENG J F. Experiment research on CO2 minimum miscible pressure in crude oil. Value Engineering, 2010, 29(3):31-32.
[13] 黄春霞, 汤瑞佳, 余华贵, 等.高压悬滴法测定CO2-原油最小混相压力. 性油气藏, 2015, 27(1):127-130. HUANG C X, TANG R J, YU H G, et al. Determination of the minimum miscibility pressure of CO2 and crude oil system by hanging drop method. Lithologic Reservoirs, 2015, 27(1):127-130.
[14] NOVOSAD Z, SIBBALD L R, COSTAIN T G. Design of miscible solvents f or a rich gas drive-comparison of slim tube tests with rising bubble tests. Journal of Canada Petroleum Technology, 1990,29(1):37-42.
[15] 王香增, 高瑞民, 江绍静, 等.最小混相压力修正方法研究.石油化工高等学校学报, 2017, 30(1):42-44. WANG X Z, GAO R M, JIANG S J, et al. Modified method for minimum miscible pressure prediction. Journal of Petrochemical Universities, 2017, 30(1):42-44.
[16] 叶安平, 郭平, 王绍平, 等. 利用PR状态方程确定CO2驱最小混相压力.岩性油气藏, 2012, 24(6):125-128. YE A P, GUO P, WANG S P, et al. Determination of minimum miscibility pressure for CO2 flooding by using PR equation of state. Lithologic Reservoirs, 2012, 24(6):125-128.
[17] 杨永超, 姚振杰.延长油田CO2驱相态初探.石油化工高等学校学报, 2017, 30(1):42-44. YANG Y C, YAO Z J. Preliminary exploration of CO2 flooding phase of Yangchang Oilfield. Journal of Petrochemical Universities, 2017, 30(1):42-44.
[18] 彭宝仔, 罗虎, 陈光进, 等.用界面张力法测定CO2与原油的最小混相压力. 石油学报, 2007, 28(3):93-95. PENG B Z, LUO H, CHEN G J, et al. Determination of the minimum miscibility pressure of CO2 and crude oil system by vanishing interfacial tension method. Acta Petrolei Sinca, 2007, 28(3):93-95.
[19] 李虎, 蒲春生, 吴飞鹏.基于广义回归神经网络的CO2驱最小混相压力预测.岩性油气藏, 2012, 24(1):108-111. LI H, PU C S, WU F P. Prediction of minimum miscibility pressure in CO2 flooding based on general regression neural network. Lithologic Reservoirs, 2012, 24(1):108-111.
[20] SIBBALD L R, NOVOSAD Z, COSTAIN T G. Methodology for the specification of solvent blends for miscible enriched-gas drives. SPE 20205, 1991:373-378.
[21] 油气田开发专业标准化委员会.SY/T5542-2000地层原油物性分析方法.北京:石油工业出版社, 2001. Oil and Gas Field Development Professional Standardization Committee. SY/T5542-2000 Analytical method for reservoir crude oil physical properties. Beijing:Petroleum Industry Press, 2001.
[22] 国家能源局.SY/T 6573-2016最低混相压力实验测定方法-细管法.北京:石油工业出版社, 2016. National Energy Administration. SY/T6573-2016 Measurement method for MMP-slim tube method. Beijing:Petroleum Industry Press, 2016.
[1] 黄春霞,汤瑞佳,余华贵,江绍静. 高压悬滴法测定 CO 2 -原油最小混相压力[J]. 岩性油气藏, 2015, 27(1): 127-130.
[2] 薛建强,覃孝平,赖南君,叶仲斌,李函. 超低渗透油田降压增注体系的研究与应用[J]. 岩性油气藏, 2013, 25(6): 107-111.
[3] 叶安平,郭平,王绍平,程忠钊,简瑞. 利用PR 状态方程确定CO2 驱最小混相压力[J]. 岩性油气藏, 2012, 24(6): 125-128.
[4] 李虎,蒲春生,吴飞鹏. 基于广义回归神经网络的CO2 驱最小混相压力预测[J]. 岩性油气藏, 2012, 24(1): 108-111.
[5] 聂海峰,董立全,董伟,谢爽,谭蓓. 堡子湾耿43 井区长4+5 段开发调整方案设计及优选[J]. 岩性油气藏, 2011, 23(3): 129-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .