岩性油气藏 ›› 2015, Vol. 27 ›› Issue (1): 127–130.doi: 10.3969/j.issn.1673-8926.2015.01.019

• 油气田开发 • 上一篇    

高压悬滴法测定 CO 2 -原油最小混相压力

黄春霞,汤瑞佳,余华贵,江绍静   

  1. 陕西延长石油(集团)有限责任公司 研究院,西安 710075
  • 出版日期:2015-02-03 发布日期:2015-02-03
  • 作者简介:黄春霞( 1964- ),女,硕士,高级工程师,主要从事提高原油采收率技术研究方面的工作。 地址:( 710075 )陕西省西安市高新区科技二路 75 号。 电话:( 029 ) 88899614 。 E-mail : hchx-1@126.com 。
  • 基金资助:

    国家科技支撑计划项目“陕北煤化工 CO 2 捕集、埋存与提高采收率技术示范”(编号: 2012BAC26B00 )资助

Determination of the minimum miscibility pressure of CO 2 and crude oil system by hanging drop method

HUANG Chunxia,TANG Ruijia,YU Huagui,JIANG Shaojing   

  1.  Research Institute of Shaanxi Yanchang Petroleum ( Group ) Co. Ltd. , Xi ’ an 710075 , China
  • Online:2015-02-03 Published:2015-02-03

摘要:

 CO 2 - 原油体系的最小混相压力是 CO 2 驱油技术研究中的一个重要参数。 采用高压悬滴法测定了延长油田特低渗油藏原油在 44 ℃ 油藏温度下 CO 2 - 原油体系界面张力随压力的变化。 实验结果表明: CO 2 -原油两相间的界面张力随体系压力的升高而呈近线性下降趋势。 根据外推法得出两相体系界面张力为0 时的最小混相压力为 23.56 MPa 。 利用该方法既可以较精确地得到 CO 2 - 原油体系最小混相压力数据,又可以直接地观察到 CO 2 - 原油混相互溶时的状态。 实验操作时间较短,且简单易行,对同类实验的测定方法具有一定的参考价值。

关键词: 云质岩类;&ldquo, 白烟型&rdquo, 喷流岩;新型致密油储层;下二叠统风城组;乌尔禾地区;准噶尔盆地

Abstract:

 The minimum miscibility pressure of CO 2 and crude oil system is an important parameter for the research of CO 2 flooding technology. The interfacial tension data of CO 2 and crude oil system were measured by pendant drop method under the conditions of reservoir temperature of 44℃ and different pressure. The oil samples are produced in low permeability reservoir of Yanchang Oilfield. The experiment results show that the interfacial tension of CO 2 and crude oil decreased almost linearly as increasing pressure. According to the extrapolated method, the minimum miscibility pressure is 23.56 MPa when the interfacial tension of CO 2 and crude oil is zero. This method can be used to not only obtain the minimum miscibility pressure of CO 2 and crude oil system, but also directly observe the miscible phase picture of CO 2 and crude oil. The experiment is easier in operation and needs less time than the others, so it has a certain reference value on the measurement for similar experiments.

Key words: dolomitized rocks, “white smoke type&rdquo, exhalative rock, new type of tight oil reservoir, Lower Permian , Fengcheng Formation, Urho area, Junggar Basin

[1]江怀友,沈平平,陈立滇,等.北美石油工业二氧化碳提高采收率现状研究[J].中国能源,2007,29(7):30-33.

Jiang Huaiyou,Shen Pingping,Chen Lizhen,et al. Research status of carbon dioxide for EOR to oil industry in North America[J]. Energy of China,2007,29(7):30-33.

[2]何艳青,张焕芝.CO2 提高石油采收率技术的应用与发展[J].石油科技论坛,2008,27(3):24-26.

He Yanqing,Zhang Huanzhi. Application and development of CO2 for EOR technology[J].Global oil,2008,27(3):24-26.

[3]曹学良,郭平,杨学峰,等.低渗透油藏注气提高采收率前景分析[J].天然气工业,2006,26(3):100-102.

Cao Xueliang,Guo Ping,Yang Xuefeng,et al. An analysis of prospect of eor by gas injection in low-permeability oil reservoir[J].Natural Gas Industry,2006,26(3):100-102.

[4]钱伯章,朱建芳.世界封存 CO2 驱油的现状与前景[J].能源环境保护,2008,22(1):1-3.

Qian Bozhang,Zhu Jianfang. Present situation together with foreground that CO2 sequestrate and drive oil in the world[J].Energy Environmental Protection,2008,22(1):1-3.

[5]李书恒,赵继勇,崔攀峰,等.超低渗透储层开发技术对策[J].岩性油气藏,2008,20(3):128-131.

Li Shuheng,Zhao Jiyong,Cui Panfeng,et al. Strategies of development technology for ultra-low permeability reservoir[J].Lithologic Reservoirs,2008,20(3):128-131.

[6]夏为卫,王新海,雷娟青.低渗透油藏注二氧化碳气体的井网优选研究[J].岩性油气藏,2009,21(4):105-107.

Xia Weiwei,Wang Xinhai,Lei Juanqing. The optimization of well patterns of CO2 flooding for low-permeable reservoir[J]. Lithologic Reservoirs,2009,21(4):105-107.

[7]敖文君,赵仁保,杨晓盈,等.水驱后油藏 CO2 驱提高采收率评价研究[J].石油化工应用,2014,33(2):13-17.

Ao Wenjun,Zhao Renbao,Yang Xiaoying,et al. Research and evaluation of CO2 injection in water flooding reservoirs[J]. Petrochemical Industry Application,2014,33(2):13-17.

[8]王欢,廖新维,赵晓亮.特低渗透油藏注 CO2 驱参数优化研究[J]. 西南石油大学学报:自然科学版,2014,36(6):95-104.

Wang Huan,Liao Xinwei,Zhao Xiaoliang. Research on CO2 flooding parameters optimization of extra-low permeability reservoirs[J]. Journal of Southwest Petroleum University:Science & Technology Edition,2014,36(6):95-104.

[9]高振环,刘中春,杜兴家.油田注气开采技术[M].北京:石油工业出版社,1994:89-125.

Gao Zhenhuan,Liu Zhongchun,Du Xingjia. Gas injection technology in oilfield[M]. Beijing:Petroleum Industry Press,1994:89-125.

[10]叶安平,郭平,王绍平.利用 PR 状态方程确定 CO2 驱最小混相压力[J].岩性油气藏,2012,24(6):125-128.

[11]张广东,李祖友,刘建仪,等.注烃混相驱最小混相压力确定方法研究[J].钻采工艺,2008,31(3):99-102.

Zhang Guangdong,Li Zuyou,Liu Jianyi,et al. Study on determine methods of minimum miscibility pressure of hydrocarbon injection miscible flooding[J]. Drilling & Production Technology,2008,31 (3):99-102.

[12]Dong M,Huang S,Dyer S B,et al. A comparison of CO2 minimum miscibility pressure determinations for Weyburn crude oil[J].Journal of Petroleum Science and Engineering,2001,31(1):13-22.

[13]Novosad Z,Sibbald L R,Costain T G. Design of miscible solvents for a rich gas drive-comparison of slim tube test s with rising bubble tests[J].J. Can. Pet. Technol.,1990,29(1):37-42.

[14]Sibbald L R,Novosad Z,Cost ain T G. Methodology for the specification of solvent blends for miscible enriched-gas drives[R]. SPE 20205,1991.

[15]Rao D N, Lee J I. Determination of gas-oil miscibility conditions by interfacial tension measurements[J].Journal of Colloid and Interface Science,2003,262(2):474-482.

[16]李虎,蒲春生,吴飞鹏.基于广义回归神经网络的 CO2 驱最小混相压力预测[J].岩性油气藏,2012,24(1):108-111.

Li Hu,Pu Chunsheng,Wu Feipeng. Prediction of minimum miscibility pressure in CO2 flooding based on general regression neural network[J]. Lithologic Reservoirs,2012,24(1):108-111.

[17]Zuo Youxiang,Chu Jizheng,Ke Shuilin,et al. A study on the minimum miscibility pressure for miscible flooding systems[J].Journal of Petroleum Science and Engineering,1993,8(4):315-328.

[18]刘炳官,朱平,雍志强,等.江苏油田 CO2 混相驱现场试验研究[J].石油学报,2002,23(4):56-61.

Liu Bingguan,Zhu Ping,Yong Zhiqiang,et al. Pilot test on miscible CO2 flooding in Jiangsu Oil Field[J]. Acta Petrolei Sinica,2002, 23(4):56-61.

[19]Lake L W. Enhanced oil recovery[M]. Englewood Cliffs,NJ:PrenticeHall,1989:234.

[20]赵海龙,刘大顺,陈效鹏.一种基于数字图像的表面张力测量方法———悬滴法[J].实验力学,2010,25(1):100-105.

Zhao Hailong,Liu Dashun,Chen Xiaopeng. Pendant drop method for interfacial tension measurement[J]. Journal of xperimental Mechanics,2010,25(1):100-105.

[21]Poling B E, Prausnitz J M, O’Connell J P.液物性估算手册[M]. 北京:化学工业出版社,2006.

Poling B E,Prausnitz J M,O’Connell J P. Estimate physical properties of the gas-liquid Manual [M]. Beijing:Chemical Industry Press,2006.

[20]Juza J. The pendant drop method of surface tension measurement:Ye Anping,Guo Ping,Wang Shaoping. Determination of minimum miscibility pressure for CO2 flooding by using PR equation of state [J].Lithologic Reservoirs,2012,24(6):125-128.

Equation interpolating the shape factor tables for several selected planes[J].Czechoslovak J. Physics,1997,47(3):351-357.

[1] 傅 饶, 郑荣才, 常海亮, 祁利祺, 文华国, 李 云. 湖相“白烟型”喷流岩——新型的致密油储层类型—— — 以准噶尔盆地西缘乌尔禾地区风城组为例[J]. 岩性油气藏, 2015, 27(3): 32-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .