岩性油气藏 ›› 2015, Vol. 27 ›› Issue (1): 122–126.doi: 10.3969/j.issn.1673-8926.2015.01.018

• 油气田开发 • 上一篇    下一篇

气顶底水油藏水平井临界产量计算方法

袁 淋 1,李晓平 1,刘盼盼2   

  1.  1. 西南石油大学 油气藏地质及开发工程国家重点实验室,成都 610500 ;2. 中国石油长庆油田分公司 采气一厂,陕西 榆林 718500 )
  • 出版日期:2015-02-03 发布日期:2015-02-03
  • 作者简介:袁淋( 1990- ),男,西南石油大学在读硕士研究生,研究方向为油气藏工程与渗流力学。 地址:( 610500 )四川省成都市新都区西南石油大学油气藏地质及开发工程国家重点实验室 B403 室。 E-mail : yuanlin343@163.com
  • 基金资助:

    国家杰出青年科学基金项目“油气渗流力学”(编号: 51125019 )资助

New method for determining critical rate of horizontal well in gas cap and bottom water reservoirs

YUAN Lin 1,LI Xiaoping 1,LIU Panpan 2   

  1. 1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation , Southwest Petroleum University , Chengdu 610500 , China ;2. No. 1 Gas Production Plant , PetroChina Changqing Oilfield Company , Yulin 718500 , Shannxi , China
  • Online:2015-02-03 Published:2015-02-03

摘要:

气顶底水油藏水平井临界产量是衡量水平井井筒是否过早水锥和气锥的一个重要因素,准确计算其大小对气顶底水油藏开发至关重要。 基于水平井井筒周围气顶与底水锥进原理,考虑水平井井筒周围椭圆形等压面,并将该等压面等效为发展矩形族,利用椭圆渗流原理推导了气顶底水油藏水平井临界产量计算模型。通过实例计算与对比,本文模型计算结果与数值模拟方法临界产量计算结果相对误差为 9.08%,且油层厚度较大时,两者之间的误差更小,说明本文模型准确性较好,实用性较强。敏感性分析表明,随着水平井无因次井筒位置的增大,临界产量呈现先增大后减小的趋势,且由于气水物性差异,临界产量在无因次井筒位置为 0.4 时取得最大值。因此,在利用水平井开发气顶底水油藏的过程中,应优选水平井井筒位置以保持较大临界产量。

关键词: 实验分析技术, 致密油储层, 芦草沟组, 二叠系, 吉木萨尔凹陷, 准噶尔盆地

Abstract:

 Critical rate of horizontal well in gas cap and bottom water reservoirs is an important factor to measure whether the water and gas had breaked through oil-well earlier or not, so calculating its value accurately is of great significance during developing the gas cap and bottom water reservoirs. Based on the cresting mechanism of bottom water and gas cap around bore hole of horizontal well, this paper considered the ellipsoid constant pressure surfaces as family of the rectangles, used the principle of elliptical flow to deduct a new model for calculating the critical rate of horizontal well in gas cap and bottom water reservoirs. Through actual calculation and contrast, the result calculated by new model only has a small relative error with that calculated by numerical simulation method, only 9.08%. Moreover, when the reservoir thickness is big enough, the error will become smaller, which demonstrates that the new model has higher accuracy and practicability. Sensitivity analysis shows that with the increasing of dimensionless wellbore location, the critical rate presents increasing early, but decreasing when the dimensionless wellbore location has reached a high value. The critical rate gets maximum value when the dimensionless wellbore position is 0.4 because of the physical character differences between gas and water. So during developing the gas cap and bottom water reservoirs with horizontal well, it would be best to prefer the horizontal wellbore location so as to keep higher critical rate.

Key words:  experimental analysis technology, tight reservoirs, Lucaogou Formation, Permian, Jimsar Sag, Junggar

[1]喻高明,凌建军,王家宏,等.气顶底水油藏开采特征及开发策略———以塔中 402 油藏为例[J].石油天然气学报(江汉石油学院学报),2007,29(6):142-145.

Yu Gaoming,Ling Jianjun,Wang Jiahong,et al. The exploitation characteristics and development strategy in gas cap and bottom water reservoir—Taking Tazhong 402 reservoir as an example[J]. Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute),2007,29(6):142-145.

[2]赵良金,王军.卫 2 块气顶底水油气藏剩余油分布研究[J].西南石油大学学报:自然科学版,2008,30(1):93-95.

Zhao Liangjin,Wang Jun. Remaining oil distribution in bottom water oil reservoir with gas cap of Wei 2 block[J]. Journal of Southwest Petroleum University:Science & Technology Edition,2008,30 (1):93-95.

[3]范子菲,傅秀娟,方宏长.气顶底水油藏水平井锥进的油藏工程研究[J].大庆石油地质与开发,1995,14(3):38-43.

Fan Zifei,Fu Xiujuan,Fang Hongchang. Reservoir engineering study of coning in horizontal well in a reservoir with gas cap and bottom water drive[J]. Petroleum Geology & Oilfield Development in Daqing,1995,14(3):38-43.

[4]范子菲,傅秀娟.气顶底水油藏水平井产能公式和见水时间研究[J].中国海上油气(地质),1995,9(6): 406- 413.

Fan Zifei,Fu Xiujuan. Study of productivity and breakthrough time of horizontal well in a reservoir with gas-cap and bottom-water drive[J]. China Offshore Oil and Gas(Geology),1995,9(6):406-413.

[5]范子菲.气顶底水油藏水平井试井解释方法研究[J].油气井测试,1996,5(4):25-32.

Fan Zifei. Study on well test interpretation of horizontal well in a reservoir with gas-cap and bottom-water drive[J]. Well Test,1996,5(4):25-32.

[6]王德龙,凌建军,郑双进,等.气顶底水油藏水平井最优垂向位置研究[J].断块油气田,2008,15(4):76-79.

Wang Delong,Peng Jianjun,Zheng Shuangjin,et al. Study on optimum vertical location of horizontal wells in reservoir with bottom water and gas cap[J]. Fault-block Oil & Gas Field,2008,15(4):76-79.

[7]伍增贵,孙新民.气顶底水油藏中水平井双向脊进研究[J].新疆石油地质,2008,29(5):622-625.

Wu Zenggui,Sun Xinmin. A study of dual cresting of horizontal wells in reservoirs with gas cap and bottom water [J]. Xinjiang Petroleum Geology,2008,29(5):622-625.

[8]时宇,杨正明,张训华.气顶底水油藏水平井井间干扰研究[J]. 大庆石油地质与开发,2008,27(5):62-66.

Shi Yu,Yang Zhengming,Zhang Xunhua. Interwell interference study on horizontal well in gas-cap oil reservoir with bottom water [J]. Petroleum Geology & Oilfield Development in Daqing,2008,27(5):62-66.

[9]陆燕妮,邓勇,陈刚.塔河油田缝洞型底水油藏临界产量计算研究[J].岩性油气藏,2009,21(4):108-110.

Lu Yanni,Deng Yong,Chen Gang. Calculation method of critical production rate for fractured-vuggy reservoir with bottom water[J]. Lithologic Reservoirs,2009,21(4):108-110.

[10]王庆,刘慧卿,曹立迎.非均质底水油藏水平井水淹规律研究[J].岩性油气藏,2010,22(1):122-125.

Wang Qing,Liu Huiqing,Cao Liying. Water flooding law of horizontal well in heterogeneous bottom water reservoir[J]. Lithologic Reservoirs, 2010,22(1):122-125.

[11]王涛,赵进义.底水油藏水平井含水变化影响因素分析[J].岩性油气藏,2012,24(3):103-107.

Wang Tao,Zhao Jinyi. Influencing factors of water cut for horizontal wells in bottom water reservoir [J]. Lithologic Reservoirs,2012,24(3):103-107. 

[12]陈元千.预测水锥和气锥水平井临界产量的新方法[J].中国海上油气,2010,22(1):22-26.

Chen Yuanqian. New methods to predict critical production retes in horizontal wells with water and gas coning[J]. China Offshore Oil and Gas,2010,22(1):22-26.

[13]吕劲.水平井稳态产油量解析公式及讨论[J].石油勘探与开发,1994,20(6):135-140.

Lü Jin. An analytical solution of steady-state flow equation for the productivity of a horizontal well [J]. Petroleum Exploration and Development,1994,20(6):135-140.

[14]熊健,曾山,王绍平.低渗透油藏变导流垂直裂缝井产能模型[J].岩性油气藏,2013,25(6):122-126.

Xiong Jian,Zeng Shan,Wang Shaoshan. A productivity model of vertically fractured well with varying conductivity for low permeability reservoirs[J]. Lithologic Reservoirs,2013,25(6):122-126.

[15]张烈辉,张苏,熊燕莉,等.低渗透气藏水平井产能分析[J].天然气工业,2010,30(1):49-51.

Zhang Liehui,Zhang Su,Xiong Yanli,et al. Productivity analysis of horizontal gas wells for low permeability gas reservoirs [J].Natural Gas Industry,2010,30(1):49-51.
[1] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[2] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[3] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[4] 张治恒, 田继军, 韩长城, 张文文, 邓守伟, 孙国祥. 吉木萨尔凹陷芦草沟组储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 116-126.
[5] 杜金玲, 林鹤, 纪拥军, 江洪, 许文莉, 伍顺伟. 地震与微地震融合技术在页岩油压后评估中的应用[J]. 岩性油气藏, 2021, 33(2): 127-134.
[6] 郭秋麟, 吴晓智, 卫延召, 柳庄小雪, 刘继丰, 陈宁生. 准噶尔盆地腹部侏罗系油气运移路径模拟[J]. 岩性油气藏, 2021, 33(1): 37-45.
[7] 陈棡, 卞保力, 李啸, 刘刚, 龚德瑜, 曾德龙. 准噶尔盆地腹部中浅层油气输导体系及其控藏作用[J]. 岩性油气藏, 2021, 33(1): 46-56.
[8] 马永平, 张献文, 朱卡, 王国栋, 潘树新, 黄林军, 张寒, 关新. 玛湖凹陷二叠系上乌尔禾组扇三角洲沉积特征及控制因素[J]. 岩性油气藏, 2021, 33(1): 57-70.
[9] 陈静, 陈军, 李卉, 努尔艾力·扎曼. 准噶尔盆地玛中地区二叠系—三叠系叠合成藏特征及主控因素[J]. 岩性油气藏, 2021, 33(1): 71-80.
[10] 余兴, 尤新才, 白雨, 李鹏, 朱涛. 玛湖凹陷南斜坡断裂识别及其对油气成藏的控制作用[J]. 岩性油气藏, 2021, 33(1): 81-89.
[11] 关新, 潘树新, 曲永强, 许多年, 张寒, 马永平, 王国栋, 陈雪珍. 准噶尔盆地沙湾凹陷滩坝砂的发现及油气勘探潜力[J]. 岩性油气藏, 2021, 33(1): 90-98.
[12] 杨凡凡, 姚宗全, 杨帆, 德勒恰提·加娜塔依, 张磊, 曹天儒. 准噶尔盆地玛北地区三叠系百口泉组岩石物理相[J]. 岩性油气藏, 2021, 33(1): 99-108.
[13] 李树博, 郭旭光, 郑孟林, 王泽胜, 刘新龙. 准噶尔盆地东部西泉地区石炭系火山岩岩性识别[J]. 岩性油气藏, 2021, 33(1): 258-266.
[14] 蒋中发, 丁修建, 王忠泉, 赵辛楣. 吉木萨尔凹陷二叠系芦草沟组烃源岩沉积古环境[J]. 岩性油气藏, 2020, 32(6): 109-119.
[15] 刘博, 徐刚, 纪拥军, 魏路路, 梁雪莉, 何金玉. 页岩油水平井体积压裂及微地震监测技术实践[J]. 岩性油气藏, 2020, 32(6): 172-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .