岩性油气藏 ›› 2015, Vol. 27 ›› Issue (1): 122–126.doi: 10.3969/j.issn.1673-8926.2015.01.018

• 油气田开发 • 上一篇    下一篇

气顶底水油藏水平井临界产量计算方法

袁 淋 1,李晓平 1,刘盼盼2   

  1.  1. 西南石油大学 油气藏地质及开发工程国家重点实验室,成都 610500 ;2. 中国石油长庆油田分公司 采气一厂,陕西 榆林 718500 )
  • 出版日期:2015-02-03 发布日期:2015-02-03
  • 第一作者:袁淋( 1990- ),男,西南石油大学在读硕士研究生,研究方向为油气藏工程与渗流力学。 地址:( 610500 )四川省成都市新都区西南石油大学油气藏地质及开发工程国家重点实验室 B403 室。 E-mail : yuanlin343@163.com
  • 基金资助:

    国家杰出青年科学基金项目“油气渗流力学”(编号: 51125019 )资助

New method for determining critical rate of horizontal well in gas cap and bottom water reservoirs

YUAN Lin 1,LI Xiaoping 1,LIU Panpan 2   

  1. 1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation , Southwest Petroleum University , Chengdu 610500 , China ;2. No. 1 Gas Production Plant , PetroChina Changqing Oilfield Company , Yulin 718500 , Shannxi , China
  • Online:2015-02-03 Published:2015-02-03

摘要:

气顶底水油藏水平井临界产量是衡量水平井井筒是否过早水锥和气锥的一个重要因素,准确计算其大小对气顶底水油藏开发至关重要。 基于水平井井筒周围气顶与底水锥进原理,考虑水平井井筒周围椭圆形等压面,并将该等压面等效为发展矩形族,利用椭圆渗流原理推导了气顶底水油藏水平井临界产量计算模型。通过实例计算与对比,本文模型计算结果与数值模拟方法临界产量计算结果相对误差为 9.08%,且油层厚度较大时,两者之间的误差更小,说明本文模型准确性较好,实用性较强。敏感性分析表明,随着水平井无因次井筒位置的增大,临界产量呈现先增大后减小的趋势,且由于气水物性差异,临界产量在无因次井筒位置为 0.4 时取得最大值。因此,在利用水平井开发气顶底水油藏的过程中,应优选水平井井筒位置以保持较大临界产量。

关键词: 实验分析技术, 致密油储层, 芦草沟组, 二叠系, 吉木萨尔凹陷, 准噶尔盆地

Abstract:

 Critical rate of horizontal well in gas cap and bottom water reservoirs is an important factor to measure whether the water and gas had breaked through oil-well earlier or not, so calculating its value accurately is of great significance during developing the gas cap and bottom water reservoirs. Based on the cresting mechanism of bottom water and gas cap around bore hole of horizontal well, this paper considered the ellipsoid constant pressure surfaces as family of the rectangles, used the principle of elliptical flow to deduct a new model for calculating the critical rate of horizontal well in gas cap and bottom water reservoirs. Through actual calculation and contrast, the result calculated by new model only has a small relative error with that calculated by numerical simulation method, only 9.08%. Moreover, when the reservoir thickness is big enough, the error will become smaller, which demonstrates that the new model has higher accuracy and practicability. Sensitivity analysis shows that with the increasing of dimensionless wellbore location, the critical rate presents increasing early, but decreasing when the dimensionless wellbore location has reached a high value. The critical rate gets maximum value when the dimensionless wellbore position is 0.4 because of the physical character differences between gas and water. So during developing the gas cap and bottom water reservoirs with horizontal well, it would be best to prefer the horizontal wellbore location so as to keep higher critical rate.

Key words:  experimental analysis technology, tight reservoirs, Lucaogou Formation, Permian, Jimsar Sag, Junggar

[1]喻高明,凌建军,王家宏,等.气顶底水油藏开采特征及开发策略———以塔中 402 油藏为例[J].石油天然气学报(江汉石油学院学报),2007,29(6):142-145.

Yu Gaoming,Ling Jianjun,Wang Jiahong,et al. The exploitation characteristics and development strategy in gas cap and bottom water reservoir—Taking Tazhong 402 reservoir as an example[J]. Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute),2007,29(6):142-145.

[2]赵良金,王军.卫 2 块气顶底水油气藏剩余油分布研究[J].西南石油大学学报:自然科学版,2008,30(1):93-95.

Zhao Liangjin,Wang Jun. Remaining oil distribution in bottom water oil reservoir with gas cap of Wei 2 block[J]. Journal of Southwest Petroleum University:Science & Technology Edition,2008,30 (1):93-95.

[3]范子菲,傅秀娟,方宏长.气顶底水油藏水平井锥进的油藏工程研究[J].大庆石油地质与开发,1995,14(3):38-43.

Fan Zifei,Fu Xiujuan,Fang Hongchang. Reservoir engineering study of coning in horizontal well in a reservoir with gas cap and bottom water drive[J]. Petroleum Geology & Oilfield Development in Daqing,1995,14(3):38-43.

[4]范子菲,傅秀娟.气顶底水油藏水平井产能公式和见水时间研究[J].中国海上油气(地质),1995,9(6): 406- 413.

Fan Zifei,Fu Xiujuan. Study of productivity and breakthrough time of horizontal well in a reservoir with gas-cap and bottom-water drive[J]. China Offshore Oil and Gas(Geology),1995,9(6):406-413.

[5]范子菲.气顶底水油藏水平井试井解释方法研究[J].油气井测试,1996,5(4):25-32.

Fan Zifei. Study on well test interpretation of horizontal well in a reservoir with gas-cap and bottom-water drive[J]. Well Test,1996,5(4):25-32.

[6]王德龙,凌建军,郑双进,等.气顶底水油藏水平井最优垂向位置研究[J].断块油气田,2008,15(4):76-79.

Wang Delong,Peng Jianjun,Zheng Shuangjin,et al. Study on optimum vertical location of horizontal wells in reservoir with bottom water and gas cap[J]. Fault-block Oil & Gas Field,2008,15(4):76-79.

[7]伍增贵,孙新民.气顶底水油藏中水平井双向脊进研究[J].新疆石油地质,2008,29(5):622-625.

Wu Zenggui,Sun Xinmin. A study of dual cresting of horizontal wells in reservoirs with gas cap and bottom water [J]. Xinjiang Petroleum Geology,2008,29(5):622-625.

[8]时宇,杨正明,张训华.气顶底水油藏水平井井间干扰研究[J]. 大庆石油地质与开发,2008,27(5):62-66.

Shi Yu,Yang Zhengming,Zhang Xunhua. Interwell interference study on horizontal well in gas-cap oil reservoir with bottom water [J]. Petroleum Geology & Oilfield Development in Daqing,2008,27(5):62-66.

[9]陆燕妮,邓勇,陈刚.塔河油田缝洞型底水油藏临界产量计算研究[J].岩性油气藏,2009,21(4):108-110.

Lu Yanni,Deng Yong,Chen Gang. Calculation method of critical production rate for fractured-vuggy reservoir with bottom water[J]. Lithologic Reservoirs,2009,21(4):108-110.

[10]王庆,刘慧卿,曹立迎.非均质底水油藏水平井水淹规律研究[J].岩性油气藏,2010,22(1):122-125.

Wang Qing,Liu Huiqing,Cao Liying. Water flooding law of horizontal well in heterogeneous bottom water reservoir[J]. Lithologic Reservoirs, 2010,22(1):122-125.

[11]王涛,赵进义.底水油藏水平井含水变化影响因素分析[J].岩性油气藏,2012,24(3):103-107.

Wang Tao,Zhao Jinyi. Influencing factors of water cut for horizontal wells in bottom water reservoir [J]. Lithologic Reservoirs,2012,24(3):103-107. 

[12]陈元千.预测水锥和气锥水平井临界产量的新方法[J].中国海上油气,2010,22(1):22-26.

Chen Yuanqian. New methods to predict critical production retes in horizontal wells with water and gas coning[J]. China Offshore Oil and Gas,2010,22(1):22-26.

[13]吕劲.水平井稳态产油量解析公式及讨论[J].石油勘探与开发,1994,20(6):135-140.

Lü Jin. An analytical solution of steady-state flow equation for the productivity of a horizontal well [J]. Petroleum Exploration and Development,1994,20(6):135-140.

[14]熊健,曾山,王绍平.低渗透油藏变导流垂直裂缝井产能模型[J].岩性油气藏,2013,25(6):122-126.

Xiong Jian,Zeng Shan,Wang Shaoshan. A productivity model of vertically fractured well with varying conductivity for low permeability reservoirs[J]. Lithologic Reservoirs,2013,25(6):122-126.

[15]张烈辉,张苏,熊燕莉,等.低渗透气藏水平井产能分析[J].天然气工业,2010,30(1):49-51.

Zhang Liehui,Zhang Su,Xiong Yanli,et al. Productivity analysis of horizontal gas wells for low permeability gas reservoirs [J].Natural Gas Industry,2010,30(1):49-51.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[3] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[4] 肖博雅. 二连盆地阿南凹陷白垩系凝灰岩类储层特征及有利区分布[J]. 岩性油气藏, 2024, 36(6): 135-148.
[5] 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159.
[6] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[7] 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166.
[8] 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177.
[9] 徐田录, 吴承美, 张金凤, 曹爱琼, 张腾. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024, 36(4): 35-43.
[10] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[11] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[12] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[13] 卞保力, 刘海磊, 蒋文龙, 王学勇, 丁修建. 准噶尔盆地盆1井西凹陷石炭系火山岩凝析气藏的发现与勘探启示[J]. 岩性油气藏, 2024, 36(3): 96-105.
[14] 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126.
[15] 张文播, 李亚, 杨田, 彭思桥, 蔡来星, 任启强. 四川盆地简阳地区二叠系火山碎屑岩储层特征与成岩演化[J]. 岩性油气藏, 2024, 36(2): 136-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 石战战,贺振华,文晓涛,唐湘蓉. 一种基于EMD 和GHT 的储层识别方法[J]. 岩性油气藏, 2011, 23(3): 102 -105 .