岩性油气藏 ›› 2018, Vol. 30 ›› Issue (1): 55–62.doi: 10.3969/j.issn.1673-8926.2018.01.006

• 油气地质 • 上一篇    下一篇

川南龙马溪组页岩孔隙结构综合表征及其分形特征

陈居凯1,2, 朱炎铭1,2, 崔兆帮1,2, 张闯辉1,2   

  1. 1. 中国矿业大学 资源与地球科学学院, 江苏 徐州 221116;
    2. 煤层气资源与成藏过程教育部重点实验室(中国矿业大学), 江苏 徐州 221116
  • 收稿日期:2017-06-10 修回日期:2017-08-01 出版日期:2018-01-21 发布日期:2018-01-21
  • 作者简介:陈居凯(1993-),男,中国矿业大学在读硕士研究生,研究方向为石油地质学。地址:(221008)江苏省徐州市中国矿业大学国家大学科技园煤层气资源与成藏过程教育部重点实验室307室。Email:cumtcjk@163.com。
  • 基金资助:
    国家自然科学基金项目“中上扬子地区龙马溪组页岩微孔结构演变与页岩气成藏效应(编号:41272155)、国家重大科技专项“大型油气田及煤层气开发-页岩气工业化建产区评价与高产主控因素研究”(编号:2017ZX05035004)和山西省煤基重点科技攻关项目“煤层气、页岩气资源潜力综合评价及共探共采选区研究”(编号:MQ2014-02)联合资助

Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin

CHEN Jukai1,2, ZHU Yanming1,2, CUI Zhaobang1,2, ZHANG Chuanghui1,2   

  1. 1. School of Resource and Earth Science, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China;
    2. Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • Received:2017-06-10 Revised:2017-08-01 Online:2018-01-21 Published:2018-01-21

摘要: 为了科学评价川南地区龙马溪组页岩孔隙发育特征对页岩气赋存与流动过程的影响,综合采用压汞、液氮吸附及二氧化碳吸附等测试方法,对页岩孔隙结构进行全尺度表征,并对不同尺寸的孔隙进行分形拟合,计算综合分形维数,最后结合地球化学和矿物组成对综合分形维数的影响因素进行探讨。结果表明:页岩样品孔径分布呈多峰态,各阶段孔隙均对总体积有一定贡献,而孔隙比表面积主要由微孔和介孔贡献。龙马溪组页岩孔隙符合分形规律,具有自相似性,宏孔孔隙结构较介孔、微孔更为复杂。以2个孔径段的孔体积比为加权值,计算获得综合分形维数为2.491~2.623,平均为2.560,孔隙结构较为复杂。有机碳含量和矿物组成对综合分形维数具有明显控制作用,有机碳含量越高,综合分形维数越大。孔隙结构复杂程度与综合分形维数呈正相关关系,脆性矿物含量与综合分形维数呈负相关关系,有机质成熟度和黏土矿物对孔隙综合分形维数有积极影响。

关键词: 孔隙结构, 综合表征, 分形维数, 龙马溪组, 川南地区

Abstract: The pore development characteristics of Longmaxi shale in the southern Sichuan Basin have influence on shale gas occurrence and flow process. To scientifically evaluate the influence,the high-pressure mercury intrusion,low-temperature nitrogen and carbon dioxide adsorption were comprehensively used to characterize the pore structure,and the fractal fitting of pores in different size was made to calculate the integrated fractal dimensions,and combined with geochemistry and mineral composition,the influencing factors of the integrated fractal dimensions were discussed. The results indicate that the pore diameter distributions of the samples are multi-modal. The pores in different stages account for the pore volume to some extent,whereas micropores and mesopores account for the pore specific surface area. The pores of Longmaxi shale have self-similarity according with fractals laws,and compared with mesopores and micropores,the structure of macropore is more complex. Considering the pore volume of different pore diameters as the weighted value,the calculated integrated fractal dimensions are from 2.491 to 2.623,with an average of 2.560. The organic carbon content and mineral composition have an obvious controlling effect on the integrated fractal dimension which becomes larger with higher organic carbon content and more complex pore structure. The brittle mineral content is negatively correlated with the integrated fractal dimension,while the maturity and clay minerals have a positive influence on it.

Key words: pore structure, comprehensive characterization, fractal dimension, Longmaxi Formation, southern Sichuan Basin

中图分类号: 

  • TE122
[1] 郭旭升,胡东风,文治东,等.四川盆地及周缘下古生界海相页岩气富集高产主控因素——以焦石坝地区五峰组一龙马溪组为例.中国地质,2014,41(3):893-901. GUO X S,HU D F,WEN Z D,et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery:a case study of Wufeng-Longmaxi Formation of Jiaoshiba area. Geology in China,2014,41(3):893-901.
[2] 胡东风,张汉荣,倪楷,等.四川盆地东南缘海相页岩气保存条件及其主控因素.天然气工业,2014,34(6):17-23. HU D F,ZHANG H R,NI K,et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin. Natural Gas Industry,2014,34(6):17-23.
[3] 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(一).石油勘探与开发,2015,42(6):689-701. ZOU C N,DONG D Z,WANGYM,et al. Shale gas in China:characteristics,challenges and prospects(Ⅰ). Petroleum Exploration and Development,2015,42(6):689-701.
[4] 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(二).石油勘探与开发,2016,43(2):166-178. ZOU C N,DONG D Z,WANGYM,et al. Shale gas in China:characteristics,challenges and prospects(Ⅱ). Petroleum Exploration and Development,2016,43(2):166-178.
[5] 罗健,戴鸿鸣,邵隆坎,等.四川盆地下古生界页岩气资源前景预测.岩性油气藏,2012,24(4):70-74. LOU J,DAI H M,SHAO L K,et al. Prospect prediction for shale gas resources of the Lower Paleozoic in Sichuan Basin. Lithologic Reservoirs,2012,24(4):70-74.
[6] 董大忠,高世葵,黄金亮,等.论四川盆地页岩气资源勘探开发前景.天然气工业,2014,34(12):1-15. DONG D Z,GAO S K,HUANG J L,et al. A discussion on the shale gas exploration & development prospect in the Sichuan Basin. Natural Gas Industry,2014,34(12):1-15.
[7] 肖贤明,宋之光,朱炎铭,等.北美页岩气研究及对我国下古生界页岩气开发的启示.煤炭学报,2013,38(5):721-727. XIAO X M,SONG Z G,ZHUYM,et al. Summary of shale gas research in North American and revelations to shale gas exploration of Lower Paleozoic strata in China south area. Journal of China Coal Society,2013,38(5):721-727.
[8] 张小龙,张同伟,李艳芳,等.页岩气勘探和开发进展综述.岩性油气藏,2013,25(2):116-122. ZHANG X L,ZHANG T W,LI Y F,et al. Research advance in exploration and development of shale gas. Lithologic Reservoirs, 2013,25(2):116-122.
[9] HOUBEN M E,DESBOIS G,URAI J L,et al. A comparative study of representative 2 D microstructures in shaly and sandy facies of Opalinus clay(Mont Terri,Switzerland)inferred form BIB-SEM and MIP methods. Marine and Petroleum Geology, 2014,49:143-161.
[10] 韩超,吴明昊,吝文,等.川南地区五峰组-龙马溪组黑色页岩储层特征.中国石油大学学报(自然科学版),2017,41(3):14-22. HAN C,WU M H,LIN W,et al. Characteristics of black shale reservoir of Wufeng-Longmaxi Formation in the Southern Sichuan Basin. Journal of China University of Petroleum(Edition of Natural Science),2017,41(3):14-22.
[11] 杨巍,陈国俊,胡士骏,等.川南-黔北地区下古生界页岩孔隙发育特征.岩性油气藏,2015,27(4):47-52. YANG W,CHEN G J,HU S J,et al. Pore characteristics of shale of Lower Paleozoic in southern Sichuan-northern Guizhou. Lithologic Reservoirs,2015,27(4):47-52.
[12] 胡琳,朱炎铭,陈尚斌,等.蜀南双河龙马溪组页岩孔隙结构的分形特征.新疆石油地质,2013,34(1):79-82. HU L,ZHU Y M,CHEN S B,et al. Fractal characteristics of shale pore structure of Longmaxi Formation in Shuanghe area in southern Sichuan.Xinjiang PetroleumGeology,2013,34(1):79-82.
[13] 梁利喜,熊健,刘向君.川南地区龙马溪组页岩孔隙结构的分形特征.成都理工大学学报(自然科学版),2015,42(6):700-708. LIANG L X,XIONG J,LIU X J. Fractal characteristics of pore structure of Longmaxi Formation shale in south of Sichuan Basin,China. Journal of Chengdu University of Technology:Science and Technology Edition,2015,42(6):700-708.
[14] 郝乐伟,王琪,唐俊.储层岩石微观孔隙结构研究方法与理论综述.岩性油气藏,2013,25(5):123-128. HAO L W,WANG Q,TANG J. Research progress of reservoir microscopic pore structure. Lithologic Reservoirs,2013,25(5):123-128.
[15] 王玉满,董大忠,杨桦,等.川南下志留统龙马溪组页岩储集空间定量表征.中国科学:D辑地球科学,2014,44(6):1348-1356. WANG Y M,DONG D Z,YANG H,et al. Quantitative characterization of reservoir space in the Lower Silurian Longmaxi shale,southern Sichuan,China. Science in China:Series D Earth Sciences,2014,44(6):1348-1356.
[16] 李可,王兴志,张馨艺,等.四川盆地东部下志留统龙马溪组页岩储层特征及影响因素.岩性油气藏,2016,28(5):52-58. LI K,WANG X Z,ZHANG X Y,et al. Shale reservoir characteristics and influencing factors of the Lower Silurian Longmaxi Formation in the eastern Sichuan Basin. Lithologic Reservoirs, 2016,28(5):52-58.
[17] 朱炎铭,王阳,陈尚斌,等.页岩储层孔隙结构多尺度定性-定量综合表征:以上扬子海相龙马溪组为例.地学前缘,2016, 23(1):154-163. ZHU Y M,WANG Y,CHEN S B,et al. Qualitative-quantitative multiscale characterization of pore structures in shale reservoirs:a case study of Longmaxi Formation in the Upper Yangtzer area. Earth Science Frontiers,2016,23(1):154-163.
[18] 田华,张水昌,柳少波,等.压汞法和气体吸附法研究富有机质页岩孔隙特征.石油学报,2012,33(3):419-427. TIAN H,ZHANG S C,LIU S B,et al. Determination of organicrich shale pore features by mercury injection and gas adsorption methods. Acta Petrolei Sinica,2012,33(3):419-427.
[19] 付常青,朱炎铭,陈尚斌,等.浙西荷塘组页岩孔隙结构及分形特征研究.中国矿业大学学报,2016,45(1):77-86. FU C Q,ZHU Y M,CHEN S B,et al. Pore structure and fractal features of Hetang Formation shale in western Zhejiang. Journal of China University of Mining and Technology,2016,45(1):77-86.
[20] 杨峰,宁正福,王庆,等.页岩纳米孔隙分形特征.天然气地球科学,2014,25(4):618-623. YANG F,NING Z F,WANG Q,et al. Fractal characteristics of nanopore in shales. Nature Gas Geoscience,2014,25(4):618-623.
[21] 张闯辉,朱炎铭,陈居凯,等.页岩孔隙综合分形特征及其影响因素分析.河南理工大学学报(自然科学版),2017,36(4):42-47. ZHANG C H,ZHU Y M,CHEN J K,et al. The comprehensive fractal characteristic of shale and its influencing factors. Journal of Henan Polytechnic University(Natural Science),2017,36(4):42-47.
[22] 魏建平,代少华,温志辉,等.不同煤级煤样的孔隙综合表征方法研究. 河南理工大学学报(自然科学版),2015,34(3):305-310. WEI J P,DAI S H,WEN Z H,et al. Research on comprehensive characterization method of different rank coal porosity. Journal of Henan Polytechnic University(Natural Science), 2015,34(3):305-310.
[23] 王聪,江成发,储伟.煤的分形维数及其影响因素分析.中国矿业大学学报,2013,42(6):1009-1014. WANG C,JIANG C F,CHU W. Fractal dimension of coals and analysis of its influencing factors. Journal of China University of Mining & Technology,2013,42(6):1009-1014.
[24] 董大忠,邹才能,李建忠,等.页岩气资源潜力与勘探开发前景.地质通报,2011,30(2):324-336. DONG D Z,ZOU C N,LI J Z,et al. Resource potential,exploration and development prospect of shale gas in the whole world. Geological Bulletin of China,2011,30(2):324-336.
[25] 郭彤楼,张汉荣.四川盆地焦石坝页岩气田形成与富集高产模式.石油勘探与开发,2014,41(1):28-36. GUO T L,ZHANG H R. Formation and enrichment mode of Jiaoshiba shale gas field,Sichuan Basin. Petroleum Exploration and Development,2014,41(1):28-36.
[26] 彭女佳,何生,郝芳,等.川东南彭水地区五峰组-龙马溪组页岩孔隙结构及差异性.地球科学,2017,42(7):1134-1146. PENG N J,HE S,HAO F,et al. The pore structure and difference between Wufeng and Longmsxi shales in Pengshui area, Southeastern Sichuan. Earth Science,2017,42(7):1134-1146.
[27] 杨永飞,王晨晨,姚军,等,页岩基质微观孔隙结构分析新方法.地球科学,2016,41(6):1067-1073. YANG Y F,WANG C C,YAO J,et al. A new method microscopic pore structure analysis in shale matrix. Earth Science, 2016,41(6):1067-1073.
[1] 王登, 周豹, 冷双梁, 温雅茹, 刘海, 张小波, 余江浩, 陈威. 鄂西咸丰地区五峰组—龙马溪组硅质岩地球化学特征及地质意义[J]. 岩性油气藏, 2022, 34(1): 52-62.
[2] 何贤, 闫建平, 王敏, 王军, 耿斌, 李志鹏, 钟光海, 张瑞湘. 低渗透砂岩孔隙结构与采油产能关系——以东营凹陷南坡F154区块为例[J]. 岩性油气藏, 2022, 34(1): 106-117.
[3] 杨占伟, 姜振学, 梁志凯, 吴伟, 王军霞, 宫厚健, 李维邦, 苏展飞, 郝绵柱. 基于2种机器学习方法的页岩TOC含量评价——以川南五峰组—龙马溪组为例[J]. 岩性油气藏, 2022, 34(1): 130-138.
[4] 李小佳, 邓宾, 刘树根, 吴娟, 周政, 焦堃. 川南宁西地区五峰组—龙马溪组多期流体活动[J]. 岩性油气藏, 2021, 33(6): 135-144.
[5] 张兵, 唐书恒, 郗兆栋, 蔺东林, 叶亚培. 湘西北地区五峰组—龙马溪组生物地层特征及勘探意义[J]. 岩性油气藏, 2021, 33(5): 11-21.
[6] 杜猛, 向勇, 贾宁洪, 吕伟峰, 张景, 张代燕. 玛湖凹陷百口泉组致密砂砾岩储层孔隙结构特征[J]. 岩性油气藏, 2021, 33(5): 120-131.
[7] 王静怡, 周志军, 魏华彬, 崔春雪. 基于页岩孔隙网络模型的油水两相流动模拟[J]. 岩性油气藏, 2021, 33(5): 148-154.
[8] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[9] 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
[10] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[11] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[12] 杨洋, 石万忠, 张晓明, 王任, 徐笑丰, 刘俞佐, 白卢恒, 曹沈厅, 冯芊. 页岩岩相的测井曲线识别方法——以焦石坝地区五峰组-龙马溪组为例[J]. 岩性油气藏, 2021, 33(2): 135-146.
[13] 梁志凯, 李卓, 李连霞, 姜振学, 刘冬冬, 高凤琳, 刘晓庆, 肖磊, 杨有东. 松辽盆地长岭断陷沙河子组页岩孔径多重分形特征与岩相的关系[J]. 岩性油气藏, 2020, 32(6): 22-35.
[14] 王朋飞, 金璨, 臧小鹏, 田黔宁, 刘国, 崔文娟. 渝东南地区海相页岩有机质孔隙发育特征及演化[J]. 岩性油气藏, 2020, 32(5): 46-53.
[15] 王朋, 孙灵辉, 王核, 李自安. 鄂尔多斯盆地吴起地区延长组长6储层特征及其控制因素[J]. 岩性油气藏, 2020, 32(5): 63-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .