岩性油气藏 ›› 2018, Vol. 30 ›› Issue (6): 27–36.doi: 10.12108/yxyqc.20180604

• 油气地质 • 上一篇    下一篇

塔里木盆地克深地区巴什基奇克组致密砂岩储层敏感性研究

任大忠1,2, 张晖3, 周然4, 王茜4, 黄海1,2, 唐胜蓝3, 金娜4   

  1. 1. 陕西省油气田特种增产技术重点实验室, 西安 710065;
    2. 西安石油大学 石油工程学院, 西安 710065;
    3. 中国石油塔里木油田分公司 油气工程研究院, 新疆 库尔勒 841000;
    4. 中国石油川庆钻探工程有限公司 钻采工程技术研究院, 西安 710021
  • 收稿日期:2018-04-12 修回日期:2018-07-18 出版日期:2018-11-16 发布日期:2018-11-16
  • 第一作者:任大忠(1985-),男,博士,讲师,主要从事油气田地质与开发方面的研究工作。地址:(710065)陕西省西安市电子二路东段18号。Email:petro_gas@163.com。
  • 基金资助:
    “十三五”国家重大科技专项“大型油气田及煤层气开发”子课题“致密气储层物理参数及孔隙动用界限研究”(编号:2016ZX05047-003-005)、国家自然科学基金青年基金项目“致密砂岩油藏成岩-烃类充注时序对微纳米孔隙结构的约束机制及石油充注孔喉下限研究”(编号:41702146)、国家自然科学面上基金项目“拉链式压裂中裂缝互作用与渗流力影响机理研究”(编号:51874242)及中国博士后科学基金项目“特低渗透砂岩储层微观孔隙结构及水驱油机理的定量表征”(编号:2015M582699)联合资助

Sensitivity of tight sandstone reservoir of Bashijiqike Formation in Keshen area, Tarim Basin

REN Dazhong1,2, ZHANG Hui3, ZHOU Ran4, WANG Qian4, HUANG Hai1,2, TANG Shenglan3, JIN Na4   

  1. 1. Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi'an 710065, China;
    2. College of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China;
    3. Research Institute of Oil/gas Engineering, PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China;
    4. Drilling and Production Technology Research Institute, CNPC Chuanqing Drilling Engineering Company Limited, Xi'an 710021, China
  • Received:2018-04-12 Revised:2018-07-18 Online:2018-11-16 Published:2018-11-16

摘要: 致密砂岩储层自然产能较低,经后期注水开发能有效提高油气的稳产效果,因此,控制注入流体的理化指标及注入参数对储层合理、有效开发十分关键。针对塔里木盆地克深地区白垩系巴什基奇克组致密砂岩储层,利用薄片鉴定、扫描电镜分析、X射线衍射分析及高压压汞测试,开展基于孔喉类型的储层分类研究,并在此基础上选取典型样品开展敏感性评价实验,分析不同类型储层敏感性影响因素。结果表明:巴什基奇克组致密砂岩储层按照孔隙组合类型可分为残余粒间孔型、溶蚀孔型及微裂缝型3类,有效储集空间依次减少;巴什基奇克组致密砂岩储层具有强速敏、强水敏、中等偏强盐敏、强碱敏和中等酸敏特征,敏感性与储层碎屑颗粒及黏土矿物敏感程度密切相关,较高含量的伊利石可使储层速敏性及水敏性显著增强,碱液选择性溶蚀石英颗粒,储层酸敏性主要与沸石含量相关;不同孔隙组合类型储层的敏感性有明显差别,残余粒间孔型储层敏感性受孔隙结构影响较小,溶蚀孔型储层及微裂缝型储层喉道均易被充填,导致渗流能力大幅下降。研究结果可为该区及同类型致密砂岩储层发育区的有效开发提供参考。

关键词: 致密砂岩, 孔隙结构, 储层敏感性, 巴什基奇克组, 塔里木盆地

Abstract: Natural productivity of tight sandstone reservoir is lower than that of conventional reservoir and improving the injection method of water flooding is able to enhance oil and gas production efficiently. Thus, the control of physicochemical index and injection parameters of fluid is vital for reasonable and effective reservoir development. Taking tight sandstone reservoir of Cretaceous Bashijiqike Formation in Keshen area of Tarim Basin as an example, the data of casting thin slices, scanning electron microscope, X-ray diffraction and high-pressure mercury injection test were used to conduct reservoir classification based on pore structure. Typical samples were selected to carry out sensitivity evaluation experiments, and the factors affecting the sensitivity of different types of reservoirs were analyzed. The results show that the reservoirs can be divided into three types according to the types of pore assemblages:residual intergranular pores, dissolved pores and microfractures, and the effective reservoir space decreased in turn. The reservoirs have the characteristics of strong water sensitivity, velocity sensitivity and alkali sensitivity, medium-strong saline sensitivity and medium acid sensitivity. The sensitivity is closely related to the sensitivity of reservoir debris and clay minerals. Only samples with high contents of illite can enhance the velocity sensitivity and water sensitivity, alkali sensitivity is controlled by selective dissolution of quartz, and high content of zeolite is an important factor for improving reservoir acid sensitivity. Different types of reservoirs respond differently to the sensitivity. The sensitivity of residual intergranular reservoirs is less affected by pore structure. The throats of dissolved pore reservoirs and micro-fractured reservoirs are more likely to be filled, resulting in a significant decrease in seepage capacity. The research results can provide reference for the effective development of tight sandstone reservoirs.

Key words: tight sandstone, pore structure, reservoir sensitivity, Bashijiqike Formation, Tarim Basin

中图分类号: 

  • TE122.2
[1] 吴浩, 张春林, 纪友亮, 等.致密砂岩孔喉大小表征及对储层物性的控制——以鄂尔多斯盆地陇东地区延长组为例.石油学报, 2017, 38(8):876-887. WU H, ZHANG C L, JI Y L, et al. Pore-throat size characterization of tight sandstone and its control on reservoir physical properties:a case study of Yanchang Formation, eastern Gansu, Ordos Basin. Acta Petrolei Sinica, 2017, 38(8):876-887.
[2] 毕明威, 陈世悦, 周兆华, 等.鄂尔多斯盆地苏里格气田苏6区块盒8段致密砂岩储层微观孔隙结构特征及其意义.天然气地球科学, 2015, 26(10):1851-1861. BI M W, CHEN S Y, ZHOU Z H, et al. Characteristics and significance of microscopic pore structure in tight sandstone reservoir of the 8th member of lower Shihezi Formation in the Su 6 area of Sulige Gasfield. Nature Gas Geoscience, 2015, 26(10):1851-1861.
[3] 卢晨刚, 张遂安, 毛潇潇, 等.致密砂岩微观孔隙非均质性定量表征及储层意义——以鄂尔多斯盆地X地区山西组为例. 石油实验地质, 2017, 39(4):556-561. LU C G, ZHANG S A, MAO X X, et al. Quantitative characterization of microscopic pore heterogeneity in tight sandstones and its reservoir significance:a case study of the Shanxi Formation in X area, Ordos Basin. Petroleum Geology & Experiment, 2017, 39(4):556-561.
[4] 李闽, 王浩, 陈猛.致密砂岩储层可动流体分布及影响因素研究——以吉木萨尔凹陷芦草沟组为例.岩性油气藏, 2018, 30(1):140-149. LI M, WANG H, CHEN M. Quantitative characterization of microscopic pore heterogeneity in tight sandstones and its reservoir significance:a case study of the Shanxi Formation in X area, Ordos Basin. Lithologic Reservois, 2018, 30(1):140-149.
[5] 章惠, 关达, 向雪梅, 等.川东北元坝东部须四段裂缝型致密砂岩储层预测.岩性油气藏, 2018, 30(1):133-139. ZHANG H, GUAN D, XIANG X M, et al. Prediction for fractured tight sandstone reservoir of Xu 4 member in eastern Yuanba area, northeastern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):133-139.
[6] 陈双艳, 谢俊, 刘一丹, 等.裂缝性低渗透油藏储层物性的主控因素及其对产能的影响——以大情字井油田黑43区块为例.山东科技大学学报(自然科学版), 2014, 33(1):33-39. CHEN S Y, XIE J, LIU Y D, et al. Main controlling factors of reservoir physical property of fractured low permeability reservoir and their influence on productivity-a case study of Hei-43 block, Daqingzijing Oilfield. Journal of Shandong University of Science and Technology(Natural Sciences), 2014, 33(1):33-39.
[7] 袁学芳, 王茜, 唐洪明, 等.致密砂岩储层流体敏感性评价方法——以塔里木盆地克拉苏气田克深9井区K1bs组为例. 天然气工业, 2016, 36(12):59-66. YUAN X F, WANG Q, TANG H M, et al. An improved fluid sensitivity evaluation method for tight sandstone gas reservoirs:a case study of K1bs in well Keshen 9 of the Kelasu Gasfield, Tarim Basin. Natural Gas Industry, 2016, 36(12):59-66.
[8] 邵东波, 陈建文.鄂尔多斯盆地致密砂岩储层敏感性特征及其控制因素——以新安边地区延长组长6储层为例.西安石油大学学报(自然科学版), 2017, 32(3):55-60. SHAO D B, CHEN J W. Sensitivity of tight sandstone reservoir in Ordos Basin and its controlling factor:Taking the Chang 6 reservoir of Yanchang Formation in Xin'an bian area as example. Journal of Xi'an Shiyou University(Natural Science), 2017, 32(3):55-60
[9] 袁文芳, 秦红, 王锋, 等.致密砂岩储层速敏效应形成机理及其分布规律研究——以库车坳陷东部阿合组为例. 地质科学, 2014, 49(4):1279-1286. YUAN W F, QIN H, WANG F, et al. The formation mechanism and distribution of velocity sensitive effect in tight sandstone reservoir:Taking Ahe Formation in east Kuqa Depression, Tarim Basin, as an example. Chinese Journal of Geology, 2014, 49(4):1279-1286.
[10] 文华国, 贾斌, 蒋宜勤, 等.准噶尔盆地阜东斜坡头屯河组二段储层自然产能控制因素分析. 岩性油气藏, 2014, 26(2):9-14. WEN H G, JIA B, JIANG Y Q, et al. Controlling factors for natural productivity of the second member of Toutunhe Formation in eastern Fukang slope, Junggar Basin. Lithologic Reservoirs, 2014, 26(2):9-14.
[11] 段春节, 魏旭光, 李小冬, 等.深层高压低渗透砂岩油藏储层敏感性研究.地质科技情报, 2013, 32(3):94-99. DUAN C J, WEI X G, LI X D, et al. Formation sensitivity of the deep section high pressure and low-permeability sandstone reservoir. Geological Science and Technology Information, 2013, 32(3):94-99.
[12] 张凤奇, 王震亮, 武富礼, 等.低渗透致密砂岩储层成藏期油气运移的动力分析.中国石油大学学报(自然科学版), 2012, 36(4):32-38. ZHANG F Q, WANG Z L, WU F L, et al. Dynamic analysis on hydrocarbon migration of accumulation periods in low permeability-tight sandstone reservoir. Journal of China University of Petroleum(Edition of Natural Science), 2012, 36(4):32-38.
[13] 牛小兵, 冯胜斌, 刘飞, 等.低渗透致密砂岩储层中石油微观赋存状态与油源关系——以鄂尔多斯盆地三叠系延长组为例.石油与天然气地质, 2013, 34(3):288-293. NIU X B, FENG S B, LIU F, et al. Microscopic occurrence of oil in tight sandstones and its relation with oil sources-a case study from the Upper Triassic Yanchang Formation, Ordos Basin. Oil & Gas Geology, 2013, 34(3):288-293.
[14] 王俊鹏, 张荣虎, 赵继龙, 等.超深层致密砂岩储层裂缝定量评价及预测研究——以塔里木盆地克深气田为例.天然气地球科学, 2014, 25(11):1735-1745. WANG J P, ZHANG R H, ZHAO J L, et al. Characteristics and evaluation of fractures in ultra-deep tight sandstone reservoir:Taking Keshen Gasfield in Tarim Basin,NW China as an Example. Nature Gas Geoscience, 2014, 25(11):1735-1745.
[15] 王珂, 张惠良, 张荣虎, 等.超深层致密砂岩储层构造裂缝特征及影响因素——以塔里木盆地克深2气田为例. 石油学报, 2016, 37(6):715-727. WANG K, ZHANG H L, ZHANG R H, et al. Characteristics and influencing factors of ultra-deep tight sandstone reservoir structural fracture:a case study of Keshen-2 gas field, Tarim Basin. Acta Petrolei Sinica, 2016, 37(6):715-727.
[16] 赖锦, 王贵文, 信毅, 等.库车坳陷巴什基奇克组致密砂岩气储层成岩相分析.天然气地球科学, 2014, 25(7):1019-1032. LAI J, WANG G W, XIN Y, et al. Diagenetic facies analysis of tight sandstone gas reservoir of Bashijiqike Formation in Kuqa Depression. Nature Gas Geoscience, 2014, 25(7):1019-1032.
[17] 孙龙德.塔里木含油气盆地沉积学研究进展.沉积学报, 2004, 22(3):408-416. SUN L D. Progress of sedimentological research in Tarim Basin. Acta Sedimentologica Sinica, 2004, 22(3):408-416.
[18] 油气田开发专业标准化委员会.SY/T 5358-2010储层敏感性流动实验评价方法.北京:石油工业出版社, 2010. National Energy Administration. SY/T 5358-2010 Formation damage evaluation by flow test. Beijing:Petroleum Industry Press, 2010.
[19] 杨友运, 刘喜强, 孙睿.深埋砂岩储层长石溶孔率定量计算的新方法及应用——以鄂尔多斯盆地陇东地区长81储层为例. 石油实验地质, 2016, 38(3):395-401. YANG Y Y, LIU X Q, SUN R. A new method for the calculation of secondary porosity originating from the dissolution of feldspars in deeply buried formations and its application:a case study of the Chang 81 Formation in Longdong area,Ordos Basin. Petroleum Geology & Experiment, 2016, 38(3):395-401.
[20] 韩登林, 张双源, 袁文芳, 等.储层速敏效应形成机理及其垂向差异因素分析——以塔北隆起吉拉克地区三叠系储层为例.岩性油气藏, 2015, 27(5):19-24. HAN D L, ZHANG S Y, YUAN W F, et al. Formation mechanism and vertical distribution of velocity sensitivity effect in reservoir:an example from Triassic sandstone reservoir in Jilake area, Tabei uplift. Lithologic Reservoirs, 2015, 27(5):19-24.
[21] 李群, 郭建华, 郭原草, 等.华池油田华152区低渗透砂岩储层敏感性及其形成机理.矿物岩石, 2009, 29(2):78-83. LI Q, GUO J H, GUO Y C, et al. Sensitivity character and its mechanism analysis of low-permeability sand bodies in H152 block of Huachi Oilfield. Journal of Mineralogy and Petrology, 2009, 29(2):78-83.
[22] 曾伟, 董明, 孔令明, 等.鄂尔多斯盆地苏里格气田中、下二叠统砂岩储层敏感性影响因素分析.天然气勘探与开发, 2011, 34(3):31-34. ZENG W, DONG M, KONG L M, et al. Influencing factors of reservoir sensitivity in middle and lower Permian sandstone, Sulige Gasfield, Ordos Basin. Natural Gas Exploration and Development, 2011, 34(3):31-34.
[23] XI K, CAO Y, JAHREN J, et al. Diagenesis and reservoir quality of the Lower Cretaceous Quantou Formation tight sandstones in the southern Songliao Basin, China. Sedimentary Geology, 2015, 330:90-107.
[24] MA K, JIANG H, LI J, et al. Experimental study on the micro alkali sensitivity damage mechanism in low-permeability reservoirs using QEMSCAN. Journal of Natural Gas Science & Engineering, 2016, 36:1004-1017.
[25] 李玲, 唐洪明, 王茜, 等.克拉苏冲断带克深区带白垩系超深储集层成岩演化.新疆石油地质, 2017, 38(1):7-14. LI L, TANG H M, WANG Q, et al. Diagenetic evolution of Cretaceous ultra-deep reservoir in Keshen belt, Kelasu thrust belt, Kuqa Depression. Xinjiang Petroleum Geology, 2017, 38(1):7-14.
[26] 王海军, 邓媛, 段春节, 等.大牛地气田储层伤害研究.岩性油气藏, 2010, 22(4):125-129. WANG H J, DENG Y, DUAN C J, et al. Study on reservoir damage in Daniudi Gasfield. Lithologic Reservoirs, 2010, 22(4):125-129.
[27] 党犇, 赵虹, 康晓燕, 等.鄂尔多斯盆地陕北斜坡中部延长组深部层系特低渗储层敏感性微观机理.中南大学学报(自然科学版), 2013, 44(3):1100-1107. DANG B, ZHAO H, KANG X Y, et al. Sensitivity microscopic mechanism study of super-low permeability reservoirs in depth of Yanchang Formation in central of Shanbei Slope Ordos Basin NW China. Journal of Central South University(Science and Technology), 2013, 44(3):1100-1107.
[1] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[2] 易珍丽, 石放, 尹太举, 李斌, 李猛, 刘柳, 王铸坤, 余烨. 塔里木盆地哈拉哈塘—哈得地区中生界物源转换及沉积充填响应[J]. 岩性油气藏, 2024, 36(5): 56-66.
[3] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[4] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[5] 孟庆昊, 张昌民, 张祥辉, 朱锐, 向建波. 塔里木盆地现代分支河流体系形态、分布及其主控因素[J]. 岩性油气藏, 2024, 36(4): 44-56.
[6] 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158.
[7] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[8] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[9] 陈叔阳, 何云峰, 王立鑫, 尚浩杰, 杨昕睿, 尹艳树. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135.
[10] 杨博伟, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 白卢恒, 杨洋, 陈相霖. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏, 2024, 36(1): 45-58.
[11] 王小娟, 陈双玲, 谢继容, 马华灵, 朱德宇, 庞小婷, 杨田, 吕雪莹. 川西南地区侏罗系沙溪庙组致密砂岩成藏特征及主控因素[J]. 岩性油气藏, 2024, 36(1): 78-87.
[12] 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177.
[13] 齐育楷, 郭景祥, 罗亮, 骆福嵩, 周学文, 姚威, 张坦, 林会喜. 库车坳陷南部斜坡带隐蔽圈闭发育模式及勘探方向[J]. 岩性油气藏, 2023, 35(5): 108-119.
[14] 朱秀香, 赵锐, 赵腾. 塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏, 2023, 35(5): 131-138.
[15] 宋兴国, 陈石, 杨明慧, 谢舟, 康鹏飞, 李婷, 陈九洲, 彭梓俊. 塔里木盆地富满油田F16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏, 2023, 35(3): 99-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .