岩性油气藏 ›› 2019, Vol. 31 ›› Issue (1): 40–48.doi: 10.12108/yxyqc.20190105

• 油气地质 • 上一篇    下一篇

埕岛油田馆陶组曲流河砂体叠置模式

刘丽   

  1. 中国石化胜利油田分公司 勘探开发研究院, 山东 东营 257015
  • 收稿日期:2018-10-07 修回日期:2018-11-25 出版日期:2019-01-18 发布日期:2019-01-18
  • 作者简介:刘丽(1979-),女,博士,高级工程师,主要从事油气田地质与开发方面的研究工作。地址:(257015)山东省东营市聊城路2号中国石化胜利油田分公司勘探开发研究院。Email:3554294@qq.com。
  • 基金资助:
    山东省博士后创新项目专项基金项目“埕岛油田大井距条件下砂体配置关系研究”(编号:179655)和中国石化集团公司课题“埕岛油田整体注采关键技术研究”(编号:P17031-1)联合资助

Sandbody superimposed pattern of meandering river facies of Guantao Formation in Chengdao Oilfield

LIU Li   

  1. Research Institute of Exploration and Development, Sinopec Shengli Oilfield Company, Dongying 257015, Shandong, China
  • Received:2018-10-07 Revised:2018-11-25 Online:2019-01-18 Published:2019-01-18

摘要: 埕岛油田馆上段发育了多套河流相沉积砂体,砂体间的连通关系具有差异性,造成研究区注采不均衡。针对埕岛油田馆上段具有大斜度井多、井距大、砂体变化快、地震资料识别单砂体能力局限等特征,在井点分析的基础上,结合波动方程正演和地质统计学反演等多种方法进行综合判别,建立了埕岛油田5种河流相砂体配置模式,分别为纵向上的分离式、复合叠置式以及侧向上的分隔式、河岸接触式和切叠式。纵向上分离式河道内砂体连通性好,复合叠置式上下层砂体之间切叠,砂体不连通,注水不受效,产量递减快。侧向上分隔式砂体基本不连通,河岸接触式砂体连通性差,受效慢;切叠式的两期河道砂体部分叠加,切叠厚度大的砂体连通性好,注水受效快,切叠厚度小的2条单河道之间砂体连通性差。该成果为实现油田均衡注采提供了依据。

关键词: 河道砂体, 叠置模式, 波动方程正演, 地质统计学反演, 馆陶组, 埕岛油田

Abstract: There are many sets of fluvial facies sandbodies developed in the upper Guantao Formation in Chengdao Oilfield,and the connectivity between the sandbodies is different,resulting in uneven injection and production in the study area. The upper Guantao Formation of Chengdao Oilfield has the characteristics of many high angle holes,large well spacing,rapid change of sandbodies,and limited ability of seismic data to identify single sandbody. On the basis of well-point analysis,a comprehensive identification was carried out combined with wave equation forward modeling and geostatistical inversion,and five configuration models of fluvial sandbodies in Chengdao Oilfield were established. They are separation type and composite superimposed type in vertical and separation type,river bank contact type and cutting and stacking type in lateral. In the vertical direction,the separated channel sandbodies have good connectivity,while composite superimposed sandbodies that are not connected are cut and overlapped between upper and lower layers,with ineffective water injection and rapid production decrease. In the lateral direction,the separated sandbodies are basically disconnected;the river bank contact sandbodies are poor in connectivity and slow in effectiveness;two-stage channel sand bodies of the cutting and stacking type are partially superimposed,and sandbodies with large cutting and stacking thickness have good connectivity,with quick water injection efficiency,while sandbodies between two single channels with small cutting and stacking thickness have poor connectivity. The results provide a basis for realizing balanced injection and production in oilfields.

Key words: channel sandbody, superposition type, wave equation forward modeling, geostatistical inversion, Guantao Formation, Chengdao Oilfield

中图分类号: 

  • TE122.2
[1] MIALL A D. Architectural elements and bounding surface in fluvial deposits of Kayenta Formation(Lower Jurassic),Southwest Colorado. Sedimentary Geology,1988,55(6):233-262.
[2] CROSS T A. Stratigraphic controls on reservoir attributes in continental strata. Earth Sciences Frontiers,2000,7(4):322-350.
[3] 刘建民,徐守余. 河流相储层沉积模式及对剩余油分布的控制.石油学报,2003,24(1):58-62. LIU J M,XU S Y. Reservoir sedimentary model of fluvial facies and its control to remaining oil distribution. Acta Petrolei Sinica, 2003,24(1):58-62.
[4] 赵霞飞. 河流相模式与储层非均质性. 成都理工学院学报, 1996,26(4):357-364. ZHAO X F. Fluvial facies model and heterogeneity of fluvial reservoirs. Journal of Chengdu University of Technology,1996, 26(4):357-364.
[5] 吕晓光,赵翰卿,付志国,等.河流相储层平面连续性精细描述.石油学报,1997,18(2):66-71. LYU X G,ZHAO H Q,FU Z G,et al. A detailed description of area continuity of fluvial reservoir. Acta Petrolei Sinica 1997, 18(2):66-71.
[6] 于兴河.油田开发中后期储层面临的问题与基于沉积成因的地质表征方法.地学前缘,2012,19(2):1-14. YU X H. Existing problems and sedimentogenesis based methods of reservoir characterization during the middle and later periods of oilfield development. Earth Science Frontiers,2012,19(2):1-14.
[7] 周银邦,吴胜和,岳大力,等.复合分流河道砂体内部单河道划分:以萨北油田北二西区萨Ⅱ1+2b小层为例.油气地质与采收率,2010,17(2):4-8. ZHOU Y B,WU S H,YUE D L,et al. Identification of single channel in compound distributary sand body:Case of SⅡ1+2b layer of west Ⅱ region,3rd block of Daqing Oilfield. Petroleum Geology and Recovery Efficiency,2010,17(2):4-8.
[8] 陈清华,曾明,章凤奇,等.河流相储层单一河道的识别及其对油田开发的意义.油气地质与采收率,2004,11(3):13-15. CHEN Q H,ZENG M,ZHANG F Q,et al. Identification of single channel in fluvial reservoir and its significance to the oilfield development. Petroleum Geology and Recovery Efficiency, 2004,11(3):13-15.
[9] 田景春,张兴良,王锋,等.鄂尔多斯盆地高桥地区上古生界储集砂体叠置关系及分布定量刻画. 石油与天然气地质, 2013,34(6):737-742. TIAN J C,ZHANG X L,WANG F,et al. Quantitative characterization of superimposition relationship and distribution of reservoir sandbodies in the Upper Paleozoic of Gaoqiao region, the Ordos Basin. Oil & Gas Geology,2013,34(6):737-742.
[10] 胡光义,陈飞,范廷恩,等.渤海海域S油田新近系明化镇组河流相复合砂体叠置样式分析.沉积学报,2014,32(3):587-592. HU G Y,CHEN F,FAN T E,et al. Analysis of fluvial facies compound sandbody architecture of the Neogene Minghuazhen Formation of S oilfield in the Bohai Bay. Acta Sedimentologica Sinica,2014,32(3):587-592.
[11] 封从军,鲍志东,代春明,等.三角洲前缘水下分流河道单砂体叠置机理及对剩余油的控制:以扶余油田J19区块泉头组四段为例.石油与天然地质,2015,36(1):128-135. FENG C J,BAO Z D,DAI C M,et al. Superimposition patterns of underwater distributary channel sands in deltaic front and its control on remaining oil distribution:a case study from K1 q4 in J19 block,Fuyu oilfield. Oil & Gas Geology,2015,36(1):128-135.
[12] 张建兴,林承焰,张宪国,等.基于储层构型与油藏数值模拟的点坝储层剩余油分布研究.岩性油气藏,2017,29(4):146-153. ZHANG J X,LIN C Y,ZHANG X G,et al. Remaining oil distribution of point bar reservoir based on reservoir architecture and reservoir numerical simulation. Lithologic Reservoirs,2017,29(4):146-153.
[13] 张京斯,揣媛媛,边立恩.正演模拟技术在渤海油田X井区砂体连通性研究中的应用.岩性油气藏,2016,28(3):127-132. ZHANG J S,CHUAI Y Y,BIAN L E. Application of forward modeling to study of sand body connectivity in X well field of Bohai Oilfield. Lithologic Reservoirs,2016,28(3):127-132.
[14] 夏庆龙,赵志超,赵宪生.渤海浅部储层沉积微相与地球物理参数关系的研究.天然气工业,2004,24(5):51-53. XIA Q L,ZHAO Z C,ZHAO X S. Relations between sedimentary microfacies and geophysical parameters of shallow reservoirs Bohai Gulf. Natural Gas Industry,2004,24(5):51-53.
[15] 刘金连,张建宁.济阳探区单一河道砂体边界地质建模及其地震正演相应特征分析.石油物探,2010,49(4):344-350. LIU J L,ZHANG J N. Geological modeling and seismic forward response characteristics analysis of single channel sand body boundary in Jiyang prospecting area. Geophysical Prospecting for Petroleum,2010,49(4):344-350.
[16] 梁宏伟,穆龙新,范子菲,等. 基于正演模拟的曲流河构型层次研究. 中国矿业大学学报,2014,43(6):1063-1069. LIANG H W,MU L X,FAN Z F,et al. The AHP study of architecture pattern of meandering reservoir on the basis of forward simulation. Journal of China University of Mining & Technology, 2014,43(6):1063-1069.
[17] 徐立恒,郝兰英,刘江玉. 井震反演识别复合砂体内单一河道.西南石油大学学报(自然科学版),2014,36(2):64-70. XU L H,HAO L Y,LIU J Y. Recognition of single channel in composite sand body based on well seismic and inversion. Journal of Southwest Petroleum University(Science & Technology Edition),2014,36(2):64-70.
[18] HAAS A,DUBRULE O. Geostatistical inversion:a sequential method for stochastic reservoir modeling constrained by seismic data. First Break,1994,13(12):61-569.
[19] DUBRULE O,THIBAUT M,LAMY P,et al. Geostatistical reservoir characterization constrained by 3D seismic data. Petroleum Geoscience,1998,4(2):121-128.
[20] 孙思敏,彭仕宓.地质统计学反演方法及其在薄层砂体预测中的应用. 西安石油大学学报(自然科学版),2007,22(1):41-48. SUN S M,PENG S M. Geostatistical inversion method and its application in the prediction of thin reservoirs. Journal of Xi'an Shiyou University(Natural Science Edition),2007,22(1):41-48.
[21] 张建坤,吴鑫,方度,等.马头营凸起馆二段窄薄河道砂体地震识别. 岩性油气藏,2018,30(6):89-97. ZHANG J K,WU X,FANG D,et al. Seismic identification of narrow and thin channel sandbodies of the second member of Guantao Formation in Matouying Uplift. Lithologic Reservoirs, 2018,30(6):89-97.
[22] 赵伦,王进财,陈礼,等.砂体叠置结构及构型特征对水驱规律的影响:以哈萨克斯坦南图尔盖盆地Kumkol油田为例.石油勘探与开发,2014,41(1):86-94. ZHAO L,WANG J C,CHEN L,et al. Influences of sandstone superimposed structure and architecture on waterflooding mechanisms:a case study of Kumkol Oilfield in the South Turgay Basin,Kazakstan. Petroleum Exploration and Development, 2014,41(1):86-94.
[1] 王航, 杨海风, 黄振, 白冰, 高雁飞. 基于可容纳空间变化的河流相演化新模式及其控藏作用——以莱州湾凹陷垦利A构造为例[J]. 岩性油气藏, 2020, 32(5): 73-83.
[2] 童强, 余建国, 田云吉, 胡克来, 杨红梅, 程旭明, 朱玉双. 演武油田Y116井区延8段构型界面约束下的单河道砂体构型[J]. 岩性油气藏, 2020, 32(3): 144-158.
[3] 张家强, 李士祥, 周新平, 梁益财, 郭睿良, 闫灿灿, 陈俊霖, 李树同. 志丹地区长82砂层组缓坡浅水三角洲前缘砂体发育模式及成因[J]. 岩性油气藏, 2020, 32(1): 36-50.
[4] 周华建. 基于叠前OVT域偏移的河道砂体预测方法[J]. 岩性油气藏, 2019, 31(4): 112-120.
[5] 张建坤, 吴鑫, 方度, 王方鲁, 高文中, 陈小军. 马头营凸起馆二段窄薄河道砂体地震识别[J]. 岩性油气藏, 2018, 30(6): 89-97.
[6] 李晨, 樊太亮, 高志前, 钱小会, 傅巍. 冲积扇高分辨率层序地层分析——以辽河坳陷曙一区杜84块SAGD开发区馆陶组为例[J]. 岩性油气藏, 2017, 29(3): 66-75.
[7] 张京思,揣媛媛,边立恩. 正演模拟技术在渤海油田 X 井区砂体连通性研究中的应用[J]. 岩性油气藏, 2016, 28(3): 127-132.
[8] 徐中波,康 凯,申春生,何 滨,林国松,李 林. 渤海海域 L 油田新近系明化镇组下段与馆陶组储层沉积微相研究[J]. 岩性油气藏, 2015, 27(5): 161-166.
[9] 杨鹏飞,张丽娟,郑多明,李国会,罗浩渝,徐雷. 塔里木盆地奥陶系碳酸盐岩大型缝洞集合体定量描述[J]. 岩性油气藏, 2013, 25(6): 89-94.
[10] 王华, 郑荣才, 周祺, 李凤杰, 魏钦廉. 鄂尔多斯盆地长北气田山2 段三角洲沉积体系和砂体展布特征[J]. 岩性油气藏, 2008, 20(2): 22-28.
[11] 张昌民, 尹太举, 李少华, 熊福均. 基准面旋回对河道砂体几何形态的控制作用———以枣园油田孔一段枣Ⅱ—Ⅲ油组为例[J]. 岩性油气藏, 2007, 19(4): 9-12.
[12] 曹卿荣,李佩,孙凯,李楠. 应用地震属性分析技术刻画河道砂体[J]. 岩性油气藏, 2007, 19(2): 93-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .