岩性油气藏 ›› 2021, Vol. 33 ›› Issue (6): 48–58.doi: 10.12108/yxyqc.20210606

• 油气地质 • 上一篇    下一篇

鄂尔多斯盆地陇东地区延长组三角洲前缘前积结构特征

冯雪1, 高胜利1,2, 刘永涛3, 王秀珍3   

  1. 1. 西安石油大学 地球科学与工程学院, 西安 710065;
    2. 陕西省油气成藏地质学重点实验室, 西安 710065;
    3. 中国石油集团东方地球物理勘探有限责任公司 研究院长庆分院, 西安 710021
  • 收稿日期:2021-04-25 修回日期:2021-06-30 出版日期:2021-12-01 发布日期:2021-11-25
  • 作者简介:冯雪(1997-),女,西安石油大学在读硕士研究生,研究方向为沉积学与储层地质学。地址:(710065)陕西省西安市雁塔区长延堡街道西安石油大学地球科学与工程学院。Email:1316247730@qq.com。
  • 基金资助:
    陕西省自然科学基础研究计划项目“基于生烃期古构造的致密油有利区识别方法—以鄂尔多斯盆地为例”(编号:2019JM-359)和基础研究项目“陇东地区延长组中上部地震沉积学研究”(编号:2020-63978)联合资助

Characteristics of delta front progradation structure of Yanchang Formation in Longdong area,Ordos Basin

FENG Xue1, GAO Shengli1,2, LIU Yongtao3, WANG Xiuzhen3   

  1. 1. School of Earth Sciences and Engineering, Xi'an Shiyou University, Xi'an 710065, China;
    2. Key Laboratory of Shaanxi Province for Oil and Gas Accumulation Geology, Xi'an 710065, China;
    3. Changqing Branch, Geophysical Research Institute, BGP, CNPC, Xi'an 710021, China
  • Received:2021-04-25 Revised:2021-06-30 Online:2021-12-01 Published:2021-11-25

摘要: 为了克服二维地震资料在复杂构造中的多解性及其造成的砂体预测的不确定性,在沉积相带划分的基础上,利用迁移轨迹和前积结构相结合的方法,对二、三维地震资料进行详细解释,准确预测鄂尔多斯盆地陇东地区延长组砂体分布。研究表明,该区延长组发育有4种类型的前积结构:①S型-透镜状前积具有平坦或略微上升的迁移轨迹,有顶积层,一般发育三角洲前缘亚相,湖底发育泥岩;②S型-楔状前积具有平坦至下降的迁移轨迹,有厚底积层,发育三角洲砂岩和浊积岩;③切线斜交型-板状前积具有下降的迁移轨迹,有顶积层和底积层,发育三角洲前缘和浊积扇;④平行斜交型-楔状前积具有平坦的迁移轨迹,无顶积层和底积层,主要发育三角洲砂岩和砂质碎屑岩。其中S型-楔状前积、切线斜交型-板状前积为三角洲-浊积扇体系,为寻找岩性油气藏提供有利方向。

关键词: 迁移轨迹, 地震沉积学, 三角洲前缘, 深水沉积, 斜坡地形, 延长组, 鄂尔多斯盆地

Abstract: In order to overcome the multiplicity of 2D seismic data in complex structures and the uncertainty of sand body prediction, based on the division of sedimentary facies zones, the 2D and 3D seismic data were interpreted in detail by using the method of migration trajectory and progradational configuration, and the sand body distribution of Yanchang Formation in Longdong area was predicted. The results show that there are four types of progradational configuration of Yanchang Formation in the study area. (1) S-type lenticular progradation has a flat or slightly upward migration path, with top deposit, delta front subfacies and mudstone at the bottom of the lake. (2) S-type wedge-shaped progradation has a flat to descending migration path, with thick basement, and delta sandstone and turbidite are developed. (3) Tangential oblique plate-shaped progradation has a descending migration path, with top and bottom layers, and delta front and turbidite fan are developed. (4) Parallel oblique wedge-shaped progradation has a flat migration path, without top and bottom beds, and delta sandstone and sandy clastic rocks are developed. S-type wedge-shaped progradation and tangential oblique plate-shaped progradation are delta turbidite fan systems, which are favorable directions for lithologic reservoir exploration.

Key words: migration trajectory, seismic sedimentology, delta front, deep water deposition, slope topography, Yanchang Formation, Ordos Basin

中图分类号: 

  • TE122.1
[1] 李慧琼,蒲仁海, 王大兴, 等. 鄂尔多斯盆地延长组地震前积反射的地质意义. 石油地球物理勘探, 2014, 49(5):985-996. LI H Q, PU R H, WANG D X, et al. Progradational reflection from lacustrine Yanchang Formation in Ordos Basin, China. Oil Geophysical Prospecting, 2014, 49(5):985-996.
[2] 肖凡, 朱红涛, 徐长贵, 等. 利用前积角"玫瑰花"图判断前积体主物源方向. 石油地球物理勘探, 2017, 52(1):181-188. XIAO F, ZHU H T, XU C G, et al. Main provenance direction determination with the rose diagram of progradation angle. Oil Geophysical Prospecting, 2017, 52(1):181-188.
[3] 刘朋波, 蒲仁海, 刘娟霞. 松辽盆地十屋断陷前积反射特征及意义. 石油地球物理勘探, 2010, 45(1):115-121. LIU P B, PU R H, LIU J X. Progradation reflection characteristics and significance in Shiwu fault depression, Songliao Basin. Oil Geophysical Prospecting, 2010, 45(1):115-121.
[4] 蒲仁海. 论地震地层的等时特征. 地层学杂志, 1996, 20(1):40-44. PU R H. On the isochronic features of seismic stratigraphy. Journal of Stratigraphy, 1996, 20(1):40-44.
[5] 蒲仁海. 前积反射的地质解释. 石油地球物理勘探, 1994, 29(4):490-497. PU R H. Geological interpretation of progradational reflections. Oil Geophysical Prospecting, 1994, 29(4):490-497.
[6] 孙萌思. 鄂尔多斯盆地延长期富烃凹陷地质构造特征及其形成环境. 西安:西北大学, 2018. SUN M S. Characteristics of geological structure and formation environment of the hydrocarbon-rich depressions in the sedimentary period of Yanchang Formation, Ordos Basin. Xi'an:Northwest University, 2018.
[7] 符勇, 李忠诚, 万谱, 等. 三角洲前缘滑塌型重力流沉积特征及控制因素:以松辽盆地大安地区青一段为例. 岩性油气藏, 2021, 33(1):198-208. FU Y, LI Z C, WAN P, et al. Sedimentary characteristics and controlling factors of slump gravity flow in delta front:A case study of Qing 1 member in Da' an area, Songliao Basin. Lithologic Reservoirs, 2021, 33(1):198-208.
[8] 李慧琼. 陇东地区延长组前积层序及有利储层预测. 西安:西北大学, 2017. LI H Q. Progradational sequence and reservoir prediction of Yanchang Formation in Longdong area. Xi'an:Northwest University, 2017.
[9] 肖学, 杨蕾, 王旭. 泌阳凹陷孙岗地区地震相识别. 岩性油气藏, 2013, 25(2):31-35. XIAO X, YANG L, WANG X. Seismic facies identification in Sungang area, Biyang Sag. Lithologic Reservoirs, 2013, 25(2):31-35.
[10] BOURGET J, AINSWORTH R B, THOMPSONS. Seismic stratigraphy and geomorphology of a tide or wave dominated shelfedge delta(NW Australia) Process-based classification from 3D seismic attributes and implications for the prediction of deep-water sands. Marine & Petroleum Geology, 2014, 57:359-384.
[11] STALE E J. Composition of seismic facies:A case study. AAPG Bulletin, 2013, 97(10):1645-1656.
[12] 易雪斐, 张昌民, 李少华, 等. 珠江口盆地NSQ2陆架边缘三角洲的识别标志及沉积模式. 成都理工大学学报(自然科学版), 2012, 39(3):257-261. YI X F, ZHANG C M, LI S H, et al. Identification marks and depositional model of the shelf-margin delta from NSQ2 of the Pearl River Mouth Basin, China. Journal of Chengdu University of Technology(Science & Technology Edition), 2012, 39(3):257-261.
[13] 薛辉, 韩春元, 肖博雅, 等. 蠡县斜坡高阳地区沙一下亚段浅水三角洲前缘沉积特征及模式. 岩性油气藏, 2020, 32(4):69-80. XUE H, HAN C Y, XIAO B Y, et al. Sedimentary characteristics and models of shallow water delta front of the lower first member of Shahejie Formation in Gaoyang area, Lixian slope. Lithologic Reservoirs, 2020, 32(4):69-80.
[14] OLARIU C, STEEL R J. Influence of point-source sedimentsupply on modern shelf-slope morphology:Implications for interpretation of ancient shelf margins. Basin Research, 2010, 21(5):484-501.
[15] 朱筱敏, 葛家旺, 赵宏超, 等. 陆架边缘三角洲研究进展及实例分析. 沉积学报, 2017, 35(5):945-957. ZHU X M, GE J W, ZHAO H C, et al. Development of shelfedge delta researches and typical case analyses. Acta Sedimentologica Sinica, 2017, 35(5):945-957.
[16] 李文静, 王英民, 何敏, 等. 珠江口盆地中中新世陆架边缘三角洲的类型及控制因素. 岩性油气藏, 2018, 30(2):58-66. LI W J, WANG Y M, HE M, et al. Types and controlling factors of shelf margin delta of Middle Miocene in Pearl River Mouth Basin. Lithologic Reservoirs, 2018, 30(2):58-66.
[17] 李斌, 孟自芳, 宋岩, 等. 鄂尔多斯盆地西缘前陆盆地构造-沉积响应. 吉林大学学报(地球科学版), 2007, 37(4):703-709. LI B, MENG Z F, SONG Y, et al. Tectonic-sedimentary response of foreland basin in western margin of Ordos Basin. Journal of Jilin University(Earth Science Edition), 2007, 37(4):703-709.
[18] JOHANNESSEN E P, STEEL R J. Shelf-margin clinoforms and prediction of deepwater sands. Basin Research, 2005, 17(4):521-550.
[19] 丛富云, 徐尚. 陆架边缘迁移轨迹研究现状及应用前景. 地球科学进, 2017, 32(9):937-948. CONG F Y, XU S. Research status and application prospect of shelf-edge trajectory analysis. Advances in Earth Science, 2017, 32(9):937-948.
[20] 祝彦贺, 朱伟林, 徐强, 等. 珠江口盆地13.8 Ma陆架边缘三角洲与陆坡深水扇的"源-汇"关系. 中南大学学报(自然科学版), 2011, 42(12):3827-3834. ZHU Y H, ZHU W L, XU Q, et al. Sedimentary response to shelf-edge delta and slope deep-water fan in 13.8 Ma of Miocene epoch in Pearl River Mouth Basin. Journal of Central South University(Science and Technology), 2011, 42(12):3827-3834.
[21] 庞雄, 彭大钧, 陈长民, 等. 三级"源-渠-汇"耦合研究珠江深水扇系统. 地质学报, 2007, 81(6):857-864. PANG X, PENG D J, CHEN C M, et al. Three hierarchies "source-conduit-sink" coupling analysis of the Pearl River deepwater fan system. Acta Geologica Sinica, 2007, 81(6):857-864.
[22] HENRIKSEN S, HAMPSON G, HELLAND-HANSEN W, et al. Shelf edge and shoreline trajectories, a dynamic approach to stratigraphic analysis. Basin Research, 2009, 21(5):445-453.
[23] 陈亮, 于水, 胡孝林, 等. 应用陆坡形态-迁移轨迹组合法寻找大型富砂深水扇. 沉积学报, 2018, 36(1):92-100. CHEN L, YU S, HU X L, et al. Application from combination of slope geometries and shelf-edge trajectories to find largescale, sand-rich deepwater fan. Acta Sedimentologica Sinica, 2018, 36(1):92-100.
[24] 王峰, 田景春, 范立勇, 等. 鄂尔多斯盆地三叠系延长组沉积充填演化及其对印支构造运动的响应. 天然气地球科学, 2010, 21(6):882-889. WANG F, TIAN J C, FAN L Y, et al. Evolution of sedimentary fillings in Triassic Yanchang Formation and its response to indosinian movement in Ordos Basin. Natural gas Geoscience, 2010, 21(6):882-889.
[25] 杨华, 付金华, 欧阳征健, 等. 鄂尔多斯盆地西缘晚三叠世构造-沉积环境分析. 沉积学报, 2011, 29(3):427-439. YANG H, FUJ H, OUYANG Z J, et al. Analysis of tectonic-sedimentary setting in Middle and Upper Triassic in the west margin of the Ordos Basin. Acta Sedimentologica Sinica, 2011, 29(3):427-439.
[26] GLØRSTAD-CLARK E, BIRKELAND E P, NYSTUEN J P, et al. Triassic platform-margin deltas in the western Barents Sea. Marine and Petroleum Geology, 2011, 28(7):1294-1314.
[27] 蔡全升, 胡明毅, 陈孝红, 等. 小型断陷湖盆扇三角洲沉积特征与发育模式:以徐家围子断陷北部沙河子组为例. 岩性油气藏, 2018, 30(1):86-96. CAI Q S, HU M Y, CHEN X H, et al. Sedimentary characteristics and development model of fan delta in small faulted basin:A case of Shahezi Formation in northern Xujiaweizi Fault Depression, NE China. Lithologic Reservoirs, 2018, 30(1):86-96.
[28] 张曼莉, 林畅松, 何敏, 等. 珠江口盆地晚渐新世陆架边缘三角洲沉积层序结构及演化. 石油与天然气地质, 2019, 40(4):875-885. ZHANG M L, LIN C S, HE M, et al. Sequence architecture and evolution of shelf-margin deltaic systems of the Late Oligocene in Pearl River Mouth Basin. Oil & Gas Geology, 2019, 40(4):875-885.
[29] 刘化清, 冯明, 郭精义, 等. 坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征:以松辽盆地LHP地区嫩江组一段为例. 岩性油气藏, 2021, 33(3):1-12. LIU H Q, FENG M, GUO J Y, et al. Seismic reflection and sedimentary characteristics of deep-water gravity flow channels on the slope of lacustrine depression basin:First member of Nenjiang Formation in LHP area, Songliao Basin. Lithologic Reservoirs, 2021, 33(3):1-12.
[30] 邱欣卫, 刘池洋. 鄂尔多斯盆地延长期湖盆充填类型与优质烃源岩的发育. 地球学报, 2014, 35(1):101-110. QIU X W, LIU C Y. Lake-basin filling types and development of high quality hydrocarbon source rocks in Ordos Basin in Late Triassic Yanchang period. Acta Geoscientica Sinica, 2014, 35(1):101-110.
[31] 杨友运. 鄂尔多斯盆地南部延长组沉积体系和层序特征. 地质通报, 2005, 24(4):369-372. YANG Y Y. Characteristics of the depositional systems and sequence evolution of the Yanchang Formation in the southern Ordos Basin. Geological Bulletin of China, 2005, 24(4):369-372.
[32] 郭艳琴, 惠磊, 张秀能, 等. 鄂尔多斯盆地三叠系延长组沉积体系特征及湖盆演化. 西北大学学报(自然科学版), 2018, 48(4):593-602. GUO Y Q, HUI L, ZHANG X N, et al. Sedimentary system characteristics and lake basin evolution of Triassic Yanchang Formation in Ordos Basin. Journal of Northwest University (Natural Science Edition), 2018, 48(4):593-602.
[33] 魏钦廉, 杨友运, 肖玲. 鄂尔多斯盆地东北部延长组层序对储层发育的控制作用. 资源与产业, 2011, 13(5):42-47. WEI Q L, YANG Y Y, XIAO L. Control of sequence stratigraphy on reservoir of Yanchang Formation in northeast Ordos Basin. Resources & Industries, 2011, 13(5):42-47.
[34] 王宏波, 郑希民, 冯明. 鄂尔多斯盆地三叠系延长组层序地层与生储盖组合特征. 天然气地球科学, 2006, 17(5):677-681. WANG H B, ZHENG X M, FENG M. Sequence stratigraphy and Source-reservoir-cap assemblages of Yanchang Formation in Ordos Basin. Natural gas Geoscience, 2006, 17(5):677-681.
[1] 常少英, 刘玲利, 崔钰瑶, 王锋, 宋明星, 穆晓亮. 浅水三角洲薄砂层地震沉积表征技术——以准噶尔盆地芳草湖地区清水河组为例[J]. 岩性油气藏, 2022, 34(1): 139-147.
[2] 刘宗堡, 李雪, 郑荣华, 刘化清, 杨占龙, 曹松. 浅水三角洲前缘亚相储层沉积特征及沉积模式——以大庆长垣萨北油田北二区萨葡高油层为例[J]. 岩性油气藏, 2022, 34(1): 1-13.
[3] 王永骁, 付斯一, 张成弓, 范萍. 鄂尔多斯盆地东部山西组2段致密砂岩储层特征[J]. 岩性油气藏, 2021, 33(6): 12-20.
[4] 李博, 崔军平, 李莹, 李金森, 赵金, 陈彦武. 伊陕斜坡吴起地区延长组油气成藏期次分析[J]. 岩性油气藏, 2021, 33(6): 21-28.
[5] 张玉晔, 高建武, 赵靖舟, 张恒, 吴和源, 韩载华, 毛朝瑞, 杨晓. 鄂尔多斯盆地东南部长6油层组致密砂岩成岩作用及其孔隙度定量恢复[J]. 岩性油气藏, 2021, 33(6): 29-38.
[6] 杨水胜, 王汇智, 闫骁龙, 付国民. 鄂尔多斯盆地中南部侏罗系直罗组流体包裹体特征[J]. 岩性油气藏, 2021, 33(6): 39-47.
[7] 邵晓州, 王苗苗, 齐亚林, 贺彤彤, 张晓磊, 庞锦莲, 郭懿萱. 鄂尔多斯盆地平凉北地区长8油藏特征及成藏主控因素[J]. 岩性油气藏, 2021, 33(6): 59-69.
[8] 赵小萌, 郭峰, 彭晓霞, 张翠萍, 郭岭, 师宇翔. 鄂尔多斯盆地安边地区延10砂质辫状河相储层特征及主控因素[J]. 岩性油气藏, 2021, 33(6): 124-134.
[9] 许璟, 贺永红, 马芳侠, 杜彦军, 马浪, 葛云锦, 王瑞生, 郭睿, 段亮. 鄂尔多斯盆地定边油田主力油层有效储层厚度[J]. 岩性油气藏, 2021, 33(5): 107-119.
[10] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[11] 李志远, 杨仁超, 张吉, 王一, 杨特波, 董亮. 天然气扩散散失率定量评价——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2021, 33(4): 76-84.
[12] 刘化清, 冯明, 郭精义, 潘树新, 李海亮, 洪忠, 梁苏娟, 刘彩燕, 徐云泽. 坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征——以松辽盆地LHP地区嫩江组一段为例[J]. 岩性油气藏, 2021, 33(3): 1-12.
[13] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[14] 姚海鹏, 于东方, 李玲, 林海涛. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
[15] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[2] 刘雁婷. 川东北地区长兴组—飞仙关组储层特征[J]. 岩性油气藏, 2019, 31(1): 78 -86 .
[3] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[4] 车世琦. 测井资料用于页岩岩相划分及识别——以涪陵气田五峰组—龙马溪组为例[J]. 岩性油气藏, 2018, 30(1): 121 -132 .
[5] 石兰亭, 李本才, 巩固, 李楠, 丁冶. 断陷型盆地温压系统与油气成藏——以伊通地堑莫里青断陷为例[J]. 岩性油气藏, 2007, 19(1): 73 -76 .
[6] 曹卿荣,李佩,孙凯,李楠. 应用地震属性分析技术刻画河道砂体[J]. 岩性油气藏, 2007, 19(2): 93 -96 .
[7] 李 祺,陈振林,田建锋,郭启玲,郭广飞,舒克栋. 南襄盆地泌阳凹陷下二门油田核二段沉积微相研究[J]. 岩性油气藏, 2007, 19(3): 66 -72 .
[8] 李先鹏. 泥质地层中饱和度指数的确定[J]. 岩性油气藏, 2008, 20(2): 83 -85 .
[9] 聂保锋,于炳松,李正科,文川江,刘永顺,宋本彪. 新疆三塘湖盆地牛东区块晚石炭世—二叠纪火山岩相及储层特征[J]. 岩性油气藏, 2009, 21(3): 18 -22 .
[10] 刘鹏超,唐海,吕栋梁,刘铁成,蒋作焰,王迪东,王勇. 利用压力恢复曲线求取油井控制储量的新方法[J]. 岩性油气藏, 2010, 22(3): 106 -109 .