岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 139–147.doi: 10.12108/yxyqc.20220114

• 勘探技术 • 上一篇    下一篇

浅水三角洲薄砂层地震沉积表征技术——以准噶尔盆地芳草湖地区清水河组为例

常少英1,2, 刘玲利1, 崔钰瑶2, 王锋3, 宋明星3, 穆晓亮2   

  1. 1. 中国石油杭州地质研究院, 杭州 310023;
    2. 中国石油大学(北京), 北京 102249;
    3. 中国石油新疆油田分公司勘探开发研究院, 新疆克拉玛依 834000
  • 收稿日期:2021-06-30 修回日期:2021-08-18 发布日期:2022-01-21
  • 通讯作者: 崔钰瑶(1997—),女,中国石油大学(北京)在读硕士研究生,研究方向为石油天然气地质综合。Email:1064870340@qq.com。 E-mail:1064870340@qq.com
  • 作者简介:常少英(1983-),男,在读博士研究生,高级工程师,主要从事地质-地球物理综合研究工作。地址:(310023)浙江省杭州市西溪路920号中国石油杭州地质研究院。Email:changsy_hz@petrochina.com.cn
  • 基金资助:
    国家科技重大专项“大型油气田及煤层气开发”下属课题“寒武系—中新元古界碳酸盐岩规模储层形成与分布研究”(编号:2016ZX05004-002)和国家科技重大专项“南海中建海域深水油气地质条件及目标评价”(编号:2017ZX05026-006)联合资助

Seismic sedimentary characterization of thin sand layers of shallow water deltas: A case study of Qingshuihe Formation in Fangcaohu area, Junggar Basin

CHANG Shaoying1,2, LIU Lingli1, CUI Yuyao2, WANG Feng3, SONG Mingxing3, MU Xiaoliang2   

  1. 1. PetroChina Hangzhou Research Institute of Geology, Hangzhou 310023, China;
    2. China University of Petroleum(Beijing), Beijing 102249, China;
    3. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China
  • Received:2021-06-30 Revised:2021-08-18 Published:2022-01-21

摘要: 浅水三角洲薄砂层是重要的岩性油气藏勘探新领域,但砂体薄、横向变化快,沉积结构特征难以识别,制约了该类沉积体的勘探开发。以准噶尔盆地莫索湾凸起芳草湖地区为例,通过地质-地球物理综合分析,深化地震沉积学分析技术。采用“准层序组内高低频旋回波形分离技术”、“去除地层切片干涉效应技术”和“地质体与沉积背景属性融合技术”等3项技术,开展了浅水三角洲地震沉积学特征研究,并总结了浅水曲流河三角洲沉积模式。研究表明:①白垩系清水河组一段发育多个四级层序,反映湖平面周期性变化;②下切水道、扇状砂体广泛发育;③白垩系清水河一段浅水曲流河三角洲沉积体系发育3套储盖组合,是潜力较大的勘探层系。浅水三角洲薄砂层地震沉积特征识别技术的应用,助推了风险井位上钻,并取得较好的勘探效果,为该区增储上产提供了技术保障,同时对其他类似地区的薄砂层识别具有较好的借鉴意义。

关键词: 地震沉积学, 下切水道, 波形分离, 去干涉效应, 属性融合, 清水河组, 莫索湾凸起, 准噶尔盆地

Abstract: Shallow water delta thin sand layer is an important new field of lithologic reservoir exploration. It is difficult to identify the sedimentary structure of shallow water delta due to thin sand bodies and rapid lateral variation,which restricts the exploration and development of this kind of sedimentary body. Taking Fangcaohu area of Mosuowan uplift in Junggar Basin as an example,the seismic sedimentological analysis technology was deepened through comprehensive geological and geophysical analysis. The seismic sedimentological characteristics of shallow water deltas were studied,and the sedimentary models of shallow water meandering river deltas were summarized by using three technologies, such as high and low frequency cycle waveform separation in parasequence set, remov-ing interference effect of stratigraphic slice and attribute fusion of geological body and sedimentary background. The results show that:(1) Multiple fourth-order sequences are developed in the first member of Cretaceous Qingshuihe Formation in Fangcaohu area,reflecting the periodic change of lake level.(2) Incised channels and fanshaped sand bodies are widely developed.(3) There are three sets of reservoir-cap assemblages developed in the shallow meandering river delta sedimentary system of the first member of Cretaceous Qingshuihe Formation, which are exploration strata with great potential in this area. The application of seismic sedimentary characteristics identification technology of thin sand layers in shallow water deltas has promoted the drilling of risk wells and achieved good exploration results. This technology provides technical support for increasing reserves and production in this area, and it can provide reference for the identification of thin sand layers in other similar areas.

Key words: seismic sedimentology, undercut channel, waveform separation, de-interference effect, attribute fusion, Qingshuihe Formation, Mosuowan uplift, Junggar Basin

中图分类号: 

  • P631
[1] ZENG H L, ZHU X M, ZHU R K. New insights into seismic stratigraphy of shallow-water progradational sequences:Subseismic clinoforms. Interpretation, 2013, 1(1):35-51.
[2] PLINT A G. Sequence stratigraphy and paleogeography of a Cenomanian deltaic complex:The Dunvegan and lower Kaskapau formations in subsurface and outcrop, Alberta and British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 2000, 48(1):43-79.
[3] 李国发, 王亚静, 熊金良, 等. 薄互层地震切片解释中的几个问题:以一个三维地质模型为例.石油地球物理勘探, 2014, 49(2):388-393. LI G F, WANG Y J, XIONG J L, et al. Phenomena in inter-bed reservoir interpretation on seismic slices:An example of 3D geological model. Oil Geophysical Prospecting, 2014, 49(2):388-393.
[4] 刘化清, 冯明, 郭精义, 等.坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征:以松辽盆地LHP地区嫩江组一段为例.岩性油气藏, 2021, 33(3):1-12. LIU H Q, FENG M, GUO J Y, et al. Seismic reflection and sedimentary characteristics of deep-water gravity flow channels on the slope of lacustrine depression basin:First member of Nenjiang Formation in LHP area, Songliao Basin. Lithologic Reservoirs, 2021, 33(3):1-12.
[5] 李国发, 岳英, 熊金良, 等.基于三维模型的薄互层振幅属性实验研究.石油地球物理勘探, 2011, 46(1):115-120. LI G F, YUE Y, XIONG J L, et al. Experimental study on seismic amplitude attribute of thin inter-bed based on 3D model. Oil Geophysical Prospecting, 2011, 46(1):115-120.
[6] 刘振峰.油气地震地质模型述评.岩性油气藏, 2018, 30(1):19-29. LIU Z F. Review on oil and gas seismogeology models. Lithologic Reservoirs, 2018, 30(1):19-29.
[7] 高崇龙, 纪友亮, 任影, 等. 准噶尔盆地莫索湾地区白垩系清水河组沉积演化与有利砂体展布.古地理学报, 2015, 17(6):813-825. GAO C L, JI Y L, REN Y, et al. Sedimentary evolution and favorable sandbody distribution of the Cretaceous Qingshuihe Formation in Mosuowan area, Junggar Basin. Journal of Paleogeography, 2015, 17(6):813-825.
[8] 刘化清, 苏明军, 倪长宽, 等. 薄砂体预测的地震沉积学研究方法.岩性油气藏, 2018, 30(2):1-11. LIU H Q, SU M J, NI C K, et al. Thin bed prediction from interbeded background:Revised seismic sedimentological method. Lithologic Reservoirs, 2018, 30(2):1-11.
[9] 曾洪流, 朱筱敏, 朱如凯, 等. 坳陷型陆相盆地地震沉积学研究规范探讨.石油勘探与开发, 2012, 39(3):275-284. ZENG H L, ZHU X M, ZHU R K, et al. Guidelines for seismic sedimentologic study in non-marine postrift basins. Petroleum Exploration and Development, 2012, 39(3):275-284.
[10] 尚文亮, 徐少华, 蔡默仑, 等.沉积过路现象的地震识别特征及控制因素探讨.岩性油气藏, 2020, 32(6):85-96. SHANG W L, XU S H, CAI M L, et al. Discussion on seismic identification characteristics and controlling factors of sediment bypass. Lithologic Reservoirs, 2020, 32(6):85-96.
[11] 佘刚, 周小鹰, 王箭波.多子波分解与重构法砂岩储层预测. 西南石油大学学报(自然科学版), 2013, 35(1):19-27. SHE G, ZHOU X Y, WANG J B. Prediction of sand reservoir with multi-wavelet seismic trace decomposition and reconstruction. Journal of Southwest Petroleum University(Science & Technology Edition), 2013, 35(1):19-27.
[12] 张军华, 刘振, 刘炳杨, 等. 强屏蔽层下弱反射储层特征分析及识别方法. 特种油气藏, 2012, 19(1):23-26. ZHANG J H, LIU Z, LIU B Y, et al. Analysis and identification of reservoir characteristics of weak reflectors under strong shielding layer. Special Oil & Gas Reservoirs, 2012, 19(1):23-26.
[13] 刘化清, 刘宗堡, 吴孔友, 等. 岩性地层油气藏区带及圈闭评价技术研究新进展.岩性油气藏, 2021, 33(1):25-36. LIU H Q, LIU Z B, WU K Y, et al. New progress in study of play and trap evaluation technology for lithostratigraphic reservoirs. Lithologic Reservoirs, 2021, 33(1):25-36.
[14] 金成志, 秦月霜. 利用长、短旋回波形分析法去除地震强屏蔽.石油地球物理勘探, 2017, 52(5):1042-1048. JIN C Z, QIN Y S. Seismic strong shield removal based on the long and short cycle analysis. Oil Geophysical Prospecting, 2017, 52(5):1042-1048.
[15] 赵爽, 李仲东, 许红梅, 等. 多子波分解技术检测含煤砂岩储层.天然气工业, 2007, 27(9):44-47.ZHAO S, LI Z D, XU H M, et al. Using multiple wavelet decomposition technique to detect the sandstone reservoir with coal layer. Natural Gas Industry, 2007, 27(9):44-47.
[16] 何胡军, 王秋雨, 程会明.基于匹配追踪算法子波分解技术在薄互层储层预测中的应用. 物探化探计算技术, 2010, 32(6):641-644. HE H J, WANG Q Y, CHENG H M. The application of wavelet decomposition technique based on matching pursuit algorithm in thin inter-bedded reservoir prediction. Computing Techniques for Geophysical and Geochemical Exploration, 2010, 32(6):641-644.
[17] 常少英, 张先龙, 刘永福, 等.薄层砂体识别的地震沉积学研究:以TZ12井区为例.岩性油气藏, 2015, 27(6):72-77. CHANG S Y, ZHANG X L, LIU Y F, et al. Seismic sedimentology for thin sand body identification:A case study from TZ12 well block. Lithologic Reservoirs, 2015, 27(6):72-77.
[18] 刘建华, 刘天放, 李德春.薄层厚度定量解释研究.物探与化探, 1997, 21(1):23-27. LIU J H, LIU T F, LI D C. Quantitative interpretation of thin bed thickness. Geophysical and Geochemical Exploration, 1997, 21(1):23-27.
[19] 曾洪流.地震沉积学在中国:回顾和展望.沉积学报, 2011, 29(3):61-70. ZENG H L. Seismic sedimentology in China:A Review. Acta Sedimentologica Sinica, 2011, 29(3):61-70.
[20] 朱筱敏, 刘媛, 方庆, 等.大型坳陷湖盆浅水三角洲形成条件和沉积模式:以松辽盆地三肇凹陷扶余油层为例.地学前缘, 2012, 19(1):89-99. ZHU X M, LIU Y, FANG Q, et al. Formation and sedimentary model of shallow delta in large-scale lake:Example from Cretaceous Quantou Formation in Sanzhao Sag, Songliao Basin. Earth Science Frontiers, 2012, 19(1):89-99.
[21] 魏魁生, 徐怀大, 叶淑芬. 松辽盆地白垩系高分辨率层序地层格架. 石油与天然气地质, 1997, 18(1):7-14. WEI K S, XU H D, YE S F. High resolution sequence stratigraphic framework in Cretaceous, Songliao Basin. Oil & Gas Geology, 1997, 18(1):7-14.
[22] 封从军, 鲍志东, 杨玲, 等. 三角洲前缘水下分流河道储集层构型及剩余油分布. 石油勘探与开发, 2014, 41(3):323-329. FENG C J, BAO Z D, YANG L, et al. Reservoir architecture and remaining oil distribution of deltaic front underwater distributary channel. Petroleum Exploration and Development, 2014, 41(3):323-329.
[23] 朱筱敏.层序地层学. 北京:石油大学出版社, 2000. ZHU X M. Sequence stratigraphy. Beijing:Petroleum University Press, 2000.
[24] 赵路子, 张光荣, 陈伟, 等. 深层复杂地质构造带地震勘探关键技术:以四川盆地龙门山断褶带北段为例. 天然气工业, 2018, 38(1):39-48. ZHAO L Z, ZHANG G R, CHEN W, et al. Key seismic survey technologies for deep complex geological structures:A case study of the northern section of the Longmenshan fault fold belt in the Sichuan Basin. Natural Gas Industry, 2018, 38(1):39-48.
[25] 高白水, 金振奎, 李燕, 等.河流决口扇沉积模式及演化规律:以信江府前村决口扇为例.石油学报, 2015, 36(5):564-572. GAO B S, JIN Z K, LI Y, et al. Sedimentary model and evolutionary process of crevasse splays:A case of crevasse splays around Fuqiancun village along Xinjiang River. Acta Petrolei Sinica, 2015, 36(5):564-572.
[26] 王立武. 坳陷湖盆浅水三角洲的沉积特征:以松辽盆地南部姚一段为例.沉积学报, 2012, 30(6):1053-1060. WANG L W. Forming conditions and depositional characteristics of shallow-water deltas in depression basins:A case study of K2y1 in the south of Songliao Basin. Acta Sedimentologica Sinica, 2012, 30(6):1053-1060.
[27] 赵俊峰, 屈红军, 林晋炎, 等. 湖泊三角洲沉积露头精细解剖:以鄂尔多斯盆地裴庄剖面为例. 沉积学报, 2014, 32(6):1026-1034. ZHAO J F, QU H J, LIN J Y, et al. Outcrop-based anatomy of a lacustrine delta succession:A case study from Peizhuang section, Ordos Basin. Acta Sedimentologica Sinica, 2014, 32(6):1026-1034.
[28] 李燕, 金振奎, 高白水, 等. 分流河道内砂体沉积特征及定量参数:以鄱阳湖赣江三角洲为例. 地球科学与环境学报, 2016, 38(2):206-216. LI Y, JIN Z K, GAO B S, et al. Sedimentary characteristics and quantitative parameters of sand bodies in distributary channel:A case study of Ganjiang Delta in Poyang Lake. Journal of Earth Sciences and Environment, 2016, 38(2):206-216.
[29] 林承焰, 余成林, 董春梅, 等. 老油田剩余油分布:水下分流河道岔道口剩余油富集. 石油学报, 2011, 32(5):829-835. LIN C Y, YU C L, DONG C M, et al. Remaining oils distributionin old oilfields:Enrichment of remaining oils in underwater distributary channel crotches. Acta Petrolei Sinica, 2011, 32(5):829-835.
[1] 冯雪, 高胜利, 刘永涛, 王秀珍. 鄂尔多斯盆地陇东地区延长组三角洲前缘前积结构特征[J]. 岩性油气藏, 2021, 33(6): 48-58.
[2] 王剑, 周路, 靳军, 向宝力, 胡文瑄, 杨洋, 康逊. 准噶尔盆地玛南地区乌尔禾组砂砾岩优质储层特征[J]. 岩性油气藏, 2021, 33(5): 34-44.
[3] 刘化清, 冯明, 郭精义, 潘树新, 李海亮, 洪忠, 梁苏娟, 刘彩燕, 徐云泽. 坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征——以松辽盆地LHP地区嫩江组一段为例[J]. 岩性油气藏, 2021, 33(3): 1-12.
[4] 杜金玲, 林鹤, 纪拥军, 江洪, 许文莉, 伍顺伟. 地震与微地震融合技术在页岩油压后评估中的应用[J]. 岩性油气藏, 2021, 33(2): 127-134.
[5] 郭秋麟, 吴晓智, 卫延召, 柳庄小雪, 刘继丰, 陈宁生. 准噶尔盆地腹部侏罗系油气运移路径模拟[J]. 岩性油气藏, 2021, 33(1): 37-45.
[6] 陈棡, 卞保力, 李啸, 刘刚, 龚德瑜, 曾德龙. 准噶尔盆地腹部中浅层油气输导体系及其控藏作用[J]. 岩性油气藏, 2021, 33(1): 46-56.
[7] 陈静, 陈军, 李卉, 努尔艾力·扎曼. 准噶尔盆地玛中地区二叠系—三叠系叠合成藏特征及主控因素[J]. 岩性油气藏, 2021, 33(1): 71-80.
[8] 余兴, 尤新才, 白雨, 李鹏, 朱涛. 玛湖凹陷南斜坡断裂识别及其对油气成藏的控制作用[J]. 岩性油气藏, 2021, 33(1): 81-89.
[9] 关新, 潘树新, 曲永强, 许多年, 张寒, 马永平, 王国栋, 陈雪珍. 准噶尔盆地沙湾凹陷滩坝砂的发现及油气勘探潜力[J]. 岩性油气藏, 2021, 33(1): 90-98.
[10] 杨凡凡, 姚宗全, 杨帆, 德勒恰提·加娜塔依, 张磊, 曹天儒. 准噶尔盆地玛北地区三叠系百口泉组岩石物理相[J]. 岩性油气藏, 2021, 33(1): 99-108.
[11] 李树博, 郭旭光, 郑孟林, 王泽胜, 刘新龙. 准噶尔盆地东部西泉地区石炭系火山岩岩性识别[J]. 岩性油气藏, 2021, 33(1): 258-266.
[12] 何康, 张鹏志, 周军良, 甘立琴, 舒晓. 复合曲流带内部构型界面识别新方法及其应用[J]. 岩性油气藏, 2020, 32(4): 126-135.
[13] 胡潇, 曲永强, 胡素云, 潘建国, 尹路, 许多年, 滕团余, 王斌. 玛湖凹陷斜坡区浅层油气地质条件及勘探潜力[J]. 岩性油气藏, 2020, 32(2): 67-77.
[14] 李佳思, 付磊, 张金龙, 陈静, 牛斌, 张顺存. 准噶尔盆地乌夏地区中上二叠统碎屑岩成岩作用及次生孔隙演化[J]. 岩性油气藏, 2019, 31(6): 54-66.
[15] 马永平, 王国栋, 张献文, 潘树新, 黄林军, 陈永波, 郭娟娟. 粗粒沉积次生孔隙发育模式——以准噶尔盆地西北缘二叠系夏子街组为例[J]. 岩性油气藏, 2019, 31(5): 34-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[3] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[4] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .
[5] 赵贤正, 金凤鸣, 刘震, 张以明, 王权, 韩春元. 二连盆地地层岩性油藏“ 多元控砂—四元成藏—主元富集”与勘探实践(Ⅰ)——“ 多元控砂” 机理[J]. 岩性油气藏, 2007, 19(2): 9 -15 .
[6] 付广,郭杜军. 徐家围子断陷盖层分布对天然气成藏与分布的控制作用[J]. 岩性油气藏, 2009, 21(3): 7 -11 .
[7] 雷茹, 任晓娟. 低渗透砂岩气藏水锁伤害方式对比实验研究[J]. 岩性油气藏, 2008, 20(3): 124 -127 .
[8] 张虎权,卫平生,潘建国,孙 东,王宏斌. 碳酸盐岩地震储层学[J]. 岩性油气藏, 2010, 22(2): 14 -17 .
[9] 赵军, 海川, 张承森. 测井储层描述在塔中I 号礁滩体中的应用[J]. 岩性油气藏, 2008, 20(2): 86 -90 .
[10] 严耀祖, 段天向. 厚油层中隔夹层识别及井间预测技术[J]. 岩性油气藏, 2008, 20(2): 127 -131 .