岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 163–174.doi: 10.12108/yxyqc.20220117

• 论坛与综述 • 上一篇    下一篇

海外陆相页岩油地质特征与资源潜力

李梦莹, 朱如凯, 胡素云   

  1. 中国石油勘探开发研究院, 北京 100083
  • 收稿日期:2021-04-25 修回日期:2021-06-18 发布日期:2022-01-21
  • 作者简介:李梦莹(1994-),女,中国石油勘探开发研究院在读博士研究生,研究方向为沉积储层学。地址:(100083)北京市海淀区学院路20号中国石油勘探开发研究院。Email:limy0301@163.com。
  • 基金资助:
    中国石油天然气股份有限公司科学研究与技术开发项目“中国陆相页岩油成藏机理、分布规律与资源潜力研究”(编号:2019E-2601)资助

Geological characteristics and resource potential of overseas terrestrial shale oil

LI Mengying, ZHU Rukai, HU Suyun   

  1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
  • Received:2021-04-25 Revised:2021-06-18 Published:2022-01-21

摘要: 中国陆相页岩油资源丰富,历经十余年的基础研究、重点地区攻关和选区评价,在技术创新、工业化试验与试生产、规模性开发等方面均取得了显著进展,是未来油气勘探的接替领域。通过对全球典型陆相页岩油地质特征、资源潜力、开发现状进行系统调研和分析,为我国陆相页岩油地质评价和勘探开发部署提供参考。结果表明:①美国尤因塔盆地Uteland Butte段的有机质丰度高且具有超压的脆性钙质层和多孔白云岩层为有利区。②除美国外,全球101个页岩油盆地152个页岩油层系中,陆相页岩油层系为24个,陆相页岩油资源量占比约为19%。③阿根廷6个在产富油气盆地发育6套陆相页岩油层系,其陆相页岩油勘探开发受限于低有机碳含量和烃源岩厚度。④澳大利亚库珀盆地REM组以埋藏深度(小于2 000 m)、镜质体反射率(Ro为0.7%~1.0%)以及储层厚度(大于15 m)为标准确定3个页岩油有利区,预测技术可采资源量为2.4亿t。⑤乍得邦戈尔盆地Prosopis组、Mimosa组和Kubla组页岩TOC含量高、热成熟度适中(Ro为0.7%~1.2%)和浅埋深(500~3 000 m),是页岩油开发的目标层段,技术可采资源量为3.42亿t;⑥乍得Doseo盆地早白垩纪湖相页岩油技术可采资源量为9.77亿t。⑦印度尼西亚苏门答腊盆地发育Brown Shale组和Talang Akar组页岩层系,技术可采资源量分别为3.8亿t、5.61亿t。⑧西欧、北欧地区陆相页岩油资源主要分布于法国巴黎盆地Permian-Carboniferous组和德国下萨克森盆地Wealden组,以有机质成熟度和埋深为依据确定其页岩油技术可采资源量分别为4.36亿t和0.18亿t。该研究成果可为我国陆相页岩油勘探提供借鉴。

关键词: 尤因塔盆地, 库珀盆地, 邦戈尔盆地, Doseo盆地, 苏门答腊盆地, 巴黎盆地, 下萨克森盆地, 陆相页岩油

Abstract: China is rich in terrestrial shale oil resources. After more than a decade of exploration of terrestrial shale oil focusing on basic research,key areas and selection evaluation,remarkable progress has been made in technological innovation,industrial test and pilot production,large-scale development,making it a key area for future oil and gas exploration. The systematic analysis was carried out about the geological characteristics,resource potential and development status of typical terrestrial shale oil all over the world,which can provide a reference for the geological evaluation and exploration and development of terrestrial shale oil in China. The results show that:(1) It is a superiority of high organic matter abundance,overpressure,and fragile calcareous layers and porous dolomite of the Uteland Butte member,Uinta Basin,USA,providing favorable conditions for horizontal well drilling.(2) Except for the USA,of the 152 shale oil formations in 101 basins worldwide,24 are terrestrial shale oil formations,accounting for about 19% of the total terrestrial shale oil resources.(3) There are six terrestrial source rock units are developed in six petroliferous basins in Argentina where the exploration and development of terrestrial shale oil is limited by low TOC content and source rock thickness.(4) REM Formation in Cooper Basin was estimated for about 2.4×108 t of technically recoverable resource according to burial depth(less than 2 000 m),vitrinite reflectance(Ro=0.7%-1.0%) and reservoir thickness(greater than 15 m).(5) The Prosopis, Mimosa and Kubla Formation in the Bongor Basin of Chad are the target formations for shale oil development, estimated a technically recoverable resource of 3.42×108 t,with the characteristics of high TOC content,moderate thermal maturity(Ro=0.7%-1.2%) and shallow depth(500-3 000 m).(6) The technically recoverable resources of shale oil of Early Cretaceous in Doseo Basin are 9.77×108 t.(7) The counterpart of the Brown Shale Formation and Talang Akar Formation in Sumatra Basin are 3.8×108 t and 5.61×108 t,respectively.(8) The terrestrial shale oil resources in Western and Northern Europe are mainly found in the Permian-Carboniferous Formation in Paris Basin,France,and the Wealden Formation in Lower Saxony Basin,Germany,and the technically recoverable shale oil resources are 4.36×108 t and 0.18×108 t respectively based on organic matter maturity and burial depth. The study can provide a reference for terrestrial shale oil exploration in China.

Key words: Uinta Basin, Cooper Basin, Bongor Basin, Doseo Basin, Sumatra Basin, Paris Basin, Lower Saxony Basin, terrestrial shale oil

中图分类号: 

  • TE132.1
[1] 胡素云, 赵文智, 侯连华, 等. 中国陆相页岩油发展潜力与技术对策. 石油勘探与开发, 2020, 47(4):819-828. HU S Y, ZHAO W Z, HOU L H, et al. Development potential and technical strategy of continental shale oil in China. Petroleum Exploration and Development, 2020, 47(4):819-828.
[2] 赵文智, 胡素云, 侯连华, 等. 中国陆相页岩油类型、资源潜力及与致密油的边界. 石油勘探与开发, 2020, 47(1):1-10. ZHAO W Z, HU S Y, HOU L H, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil. Petroleum Exploration and Development, 2020, 47(1):1-10.
[3] 文华国, 郑荣才, 唐飞, 等. 鄂尔多斯盆地耿湾地区长6段古盐度恢复与古环境分析. 矿物岩石, 2008, 28(1):114-120. WEN H G, ZHENG R C, TANG F, et al. Reconstruction and analysis of paleosalanity and paleoenvironment of the Chang 6 member in the Gengwan region, Ordos Basin. Journal of Mineralogy and Petrology, 2008, 28(1):114-120.
[4] 杜金虎, 胡素云, 庞正炼, 等. 中国陆相页岩油类型、潜力及前景. 中国石油勘探, 2019, 24(5):560-568. DU J H, HU S Y, PANG Z L, et al. The types, potentials and prospects of continental shale oil in China. China Petroleum Exploration, 2019, 24(5):560-568.
[5] 李森, 朱如凯, 崔景伟, 等. 古环境与有机质富集控制因素研究:以鄂尔多斯盆地南缘长7油层组为例. 岩性油气藏, 2019, 31(1):87-95. LI S, ZHU R K, CUI J W, et al. Paleoenvironment and controlling factors of organic matter enrichment:A case of Chang 7 oil reservoir in southern margin of Ordos Basin. Lithologic Reservoirs, 2019, 31(1):87-95.
[6] 蒋中发, 丁修建, 王忠泉, 等. 吉木萨尔凹陷二叠系芦草沟组烃源岩沉积古环境. 岩性油气藏, 2020, 32(6):109-119. JIANG Z F, DING X J, WANG Z Q, et al. Sedimentary paleoenvironment of source rocks of Permian Lucaogou Formation in Jimsar Sag. Lithologic Reservoirs, 2020, 32(6):109-119.
[7] 张治恒, 田继军, 韩长城, 等. 吉木萨尔凹陷芦草沟组储层特征及主控因素. 岩性油气藏, 2021, 33(2):116-126. ZHANG Z H, TIAN J J, HAN C C, et al. Reservoir characteristics and main controlling factors of Lucaogou Formation in Jimsar Sag, Jungger Basin. Lithologic Reservoirs, 2021, 33(2):116-126.
[8] 邹才能, 朱如凯, 白斌. 致密油与页岩油内涵、特征、潜力及挑战. 矿物岩石地球化学通报, 2015, 34(1):3-16. ZOU C N, ZHU R K, BAI B. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1):3-16.
[9] 李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题. 中国石油勘探, 2020, 25(2):1-13. LI G X, ZHU R K. Progress, challenges and key issues of unconventional oil and gas development of CNPC. China Petroleum Exploration, 2020, 25(2):1-13.
[10] 付金华, 董国栋, 周新平, 等. 鄂尔多斯盆地油气地质研究进展与勘探技术. 中国石油勘探, 2021, 26(3):19-40. FU J H, DONG G D, ZHOU X P, et al. Research progress of petroleum geology and exploration technology in Ordos Basin. China Petroleum Exploration, 2021, 26(3):19-40.
[11] 孙龙德, 刘合, 何文渊, 等. 大庆古龙页岩油重大科学问题与研究路径探析. 石油勘探与开发, 2021, 48(3):453-463. SUN L D, LIU H, HE W Y, et al. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China. Petroleum Exploration and Development, 2021, 48(3):453-463.
[12] 黎茂稳, 马晓潇, 蒋启贵, 等.北美海相页岩油形成条件富集特征与启示. 油气地质与采收率, 2019, 26(1):13-28. LI M W, MA X X, JIANG Q G, et al. Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America. Petroleum Geology and Recovery Efficiency, 2019, 26(1):13-28.
[13] 匡立春, 侯连华, 杨智, 等. 陆相页岩油储层评价关键参数及方法. 石油学报, 2021, 42(1):1-14. KUANG L C, HOU L H, YANG Z, et al. Key parameters and methods of lacustrine shale oil reservoir characterization. Acta Petrolei Sinica, 2021, 42(1):1-14.
[14] 张廷山, 彭志, 杨巍, 等.美国页岩油研究对我国的启示. 岩性油气藏, 2015, 27(3):1-10. ZHANG T S, PENG Z, YANG W, et al. Enlightenments of American shale oil research towards China. Lithologic Reservoirs, 2015, 27(3):1-10.
[15] 邹才能, 杨智, 孙莎莎, 等."进源找油":论四川盆地页岩油气. 中国科学:地球科学, 2020, 50:903-920. ZOU C N, YANG Z, SUN S S, et al."Exploring petroleum inside source kitchen":Shale oil and gas in Sichuan Basin. Science China Earth Sciences, 2020, 50:903-920.
[16] US EIA. World shale resource assessments[. 2015-09-24]. https://www.eia.gov/analysis/studies/worldshalegas/.
[17] JOHNSON R C, BIRDWELL J E, MERCIER T J, et al. Assessment of undiscovered oil and gas resources in the Uteland Butte Member of the Eocene Green River Formation, Uinta Basin, Utah US. Geological Survey Fact Sheet, 2015.
[18] US EIA. Technically recoverable shale oil and shale gas resources:An assessment of 137 shale formations in 41 countries outside the United States. US Department of Energy/EIA, 2013.
[19] Advanced Resources International. EIA/ARI world shale gas and shale oil resource assessment. US Energy Information Administration, 2015.
[20] CHRISTOPHER J S, RONALD R C, TIMONTHY R K, et al. Assessment of shale-oil resources of the Central Sumatra Basin, Indonesia. US Geological Survey Fact Sheet, 2015.
[21] US EIA. Crude oil and natural gas proved reserves, year-end 2019. US Energy Information Administration, 2021.
[22] VANDEN BERG M D, WOOD M D, CARNEY R E, et al. Geological characterization of the Uteland Butte Member of the Eocene Green River Formation:An emerging unconventional carbonate tight oil play in the Uinta Basin, Utah. Rocky Mountain Association of Geologist-American Association of Petroleum Geologists Annual Meeting, 2014.
[23] FEDERICO R C. Dolomitization in the Uteland Butte Member of the Eocene Green River Formation, Uinta Basin, Utah. University of Alberta, 2018.
[24] BIRDWELL J E, VANDEN BERG M D, JOHNSON R C, et al. Geological, geochemical, and reservoir characterization of the Uteland Butte Member of the Green River Formation, Uinta Basin, Utah. Rocky Mountain Association of Geologists, 2016.
[25] JOHNSON R C, BIRDWELL J E, MERCIER T J, et al. Geology of tight oil and potential tight oil reservoirs in the lower part of the Green River Formation in the Uinta, Piceance, and Greater Green River Basins, Utah, Colorado, and Wyoming. USGS Scientific Investigations Report, 2016.
[26] FEDERICO R C, HANS G M, VANDEN BERG M D. Origin of petroliferous dolomitic beds in the Uteland Butte Member, Lower Green River Formation, Uinta Basin, Utah. AAPG Pacific Section and Rocky Mountain Section Joint Meeting, 2017.
[27] LEGARRETA L, VILLAR H J. Geological and geochemical keys of the potential shale resources, Argentina basins. AAPG geoscience technology workshop, unconventional resources:Basics, challenges, and opportunities for new frontier plays. Buenosaires, Argentina, 2011.
[28] STINCO L, BARREDO S. Unconventional shale and tight reservoirs of Argentina. Opportunities and Challenges. 22nd World Petroleum Congress, 2017.
[29] STINCO L, BARREDO S. Características geológicas y recursos asociados con los reservorios no convencionales del tipo shale de las cuencas productivas de la Argentina. Petrotecnica, 2014.
[30] BARREDO S, STINCO L. A geodynamic view of oil and gas resources associated to the unconventional shale reservoirs of Argentina. Unconventional Resources Technology Conference. Denver, Colorado, USA, 2013.
[31] CAPRIOGLIO P A, JARQUE G, IRIGOYEN M, et al. Pozo D129 Formation:The case of a recent shale oil discovery in a lacustrine source rock in El Huemul Field, Golfo San Jorge Basin, Southern Argentina. Unconventional Resources Technology Conference. Denver, Colorado, USA, 2020.
[32] JARIVIE D M. Shale resource systems for oil and gas:Part 2Shale oil resource systems?Breyer J A. Shale reservoirs-Giant resources for the 21st century. AAPG Memoir 97, 2012.
[33] ROMERO SARMIENTO M F, ROHAIS S, LITTKE R. Lacustrine type I kerogen characterization at different thermal maturity levels:Application to the late Cretaceous Yacoraite Formation in the Salta basin-Argentina. International Journal of Coal Geology, 2019, 203:15-27.
[34] HOWELL J A, SCHWARZ E, LUIS A S, et al. The Neuquén Basin:An overview. Research Institute of Petroleum Exploration and Development, 2021.
[35] BARREDO S, STINCO L. Unconventional reservoir geology of the Neuquén Basin Argentina. SPE 170905, 2017.
[36] BARREDO S P, MASSARO A S, FUENMAYOR E, et al. Depositional controls over the lacustrine source rocks of the Cuyana Basin. An approach to model a mechanical cyclicity through an integrated analysis of sequence stratigraphy, petrophysics and rock properties. SPE 185529, 2017.
[37] BONAPACE J C,HALLIBURTON. Water management for tight and shale reservoir:A review of what has been learned and what should be considered for development in Argentina. SPE, 2015.
[38] AHMAD, MAQSOOD, HAGHIGHI M. Mineralogy and petrophysical evaluation of Roseneath and Murteree Shale Formations, Cooper Basin, Australia. SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, 2012.
[39] JADOON Q K, ROBERTS E M, HENDERSON R A, et al. Mineralogical variability of the Permian Roseneath and Murteree Shales from the Cooper Basin, Australia:Implications for shale properties and hydrocarbon extraction. Journal of Petroleum Science and Engineering, 2018, 165:850-872.
[40] HALL L S, PALU T J, MURRAY A P, et al. Hydrocarbon prospectivity of the Cooper Basin, Australia. AAPG Bulletin, 2019, 103(1):31-63.
[41] AHMAD M, IQBAL O, KADIR A A. Quantification of organic richness through wireline logs:A case study of Roseneath shale formation, Cooper Basin, Australia. IOP Conference Series Earth and Environmental Science, 2017, 88(1):12-20.
[42] HALL L S, PALU T J, MURRAY A P, et al. Cooper Basin petroleum systems analysis:Regional hydrocarbon prospectivity of the Cooper Basin, Part 3. Geoscience Australia, 2016.
[43] JADOON Q K, ROBERTS E, BLENKINSOP T, et al. Organic petrography and thermal maturity of the Permian Roseneath and Murteree shales in the Cooper Basin, Australia. International Journal of Coal Geology, 2016, 154/155:240-256.
[44] DOU L R, CHENG D S, WANG J C, et al. Petroleum systems of the Bongor Basin and the Great Baobab Oilfield, Southern Chad. Journal of Petroleum Geology, 2020, 43(3):301-321.
[45] CHEN L, JI H C, DOU L R, et al. The characteristics of source rock and hydrocarbon charging time of Precambrian granite reservoirs in the Bongor Basin, Chad. Marine and Petroleum Geology, 2018, 97:323-338.
[46] ZHANG X S, XIAO K Y, WANG J C, et al. Organic geochemical characteristics of Lower Cretaceous source rocks and crude oils in Doseo Depression of central African rift system. Journal of African Earth Sciences, 2021, 175:104-118
[47] US EIA. Annual energy outlook 2017 with projections to 2050. US Energy Information Administration, 2017.
[48] KIRELLOS J S, NGUYEN T X, PHILP R P. Organic geochemical and paleoenvironmental characterization of the Brown Shale Formation, Kiliran sub-basin, Central Sumatra Basin, Indonesia. Organic Geochemistry, 2017, 112:137-157.
[49] HARIS A, ALMUNAWWAR H A, RIYANTO A, et al. Shale Hydrocarbon potential of Brown Shale, Central Sumatera Basin based on seismic and well data analysis. IOP Conference Series:Earth and Environmental Science, 2017.
[50] BISHOP M G. South Sumatra Basin Province, Indonesia:Thelahat/Talang Akar-Cenozoic oil and gas system. World Energy Project of the US Geological Survey, 2001.
[51] MANAF P E, SUPARNO S, HARIS A, et al. Organic shale analysis using geochemical data and seismic attributes:Case study of Talang Akar Formation, South Sumatera Basin. AIP Conference Proceedings 1862, 2017.
[52] GINGER D, FIELDING K. The petroleum systems and future potential of the South Sumatra Basin. IPA 2011-30th Annual Convention Proceedings, 2005.
[53] MONTICONE B, DUVAL M, KNISPE R, et al. Shale oil potential of the Paris Basin, France. Search and Discovery Article 10384, 2012.
[54] ZINK K G, JOLANTA K, GEORG S, et al. Source rock potential of the German Wealden(Lower Cretaceous) -interpretations of maturity trends to evaluate the start of oil and gas generation. 27th International Meeting on Organic Geochemistry, 2015.
[55] RIPPENA D, LITTKEA R, BRUNS B, et al. Organic geochemistry and petrography of Lower Cretaceous Wealden black shales of the Lower Saxony Basin:The transition from lacustrine oil shales to gas shales. Organic Geochemistry, 2013, 63:18-36.
[1] 李晓, 李闽, 陈猛, 唐雁冰. 法国巴黎盆地枫丹白露砂岩电性响应特征[J]. 岩性油气藏, 2019, 31(1): 130-138.
[2] 田鑫, 王绪本, 郭维华, 吕锡敏, 李国斌, 王荣华. Jabung区块层序地层格架及岩性油气藏勘探潜力[J]. 岩性油气藏, 2017, 29(2): 99-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[2] 石兰亭, 李本才, 巩固, 李楠, 丁冶. 断陷型盆地温压系统与油气成藏——以伊通地堑莫里青断陷为例[J]. 岩性油气藏, 2007, 19(1): 73 -76 .
[3] 李冬梅. TH 油田凝析气藏水平井试井合理压差的确定[J]. 岩性油气藏, 2007, 19(1): 130 -133 .
[4] 杨国臣,于炳松. 隐蔽油气圈闭勘探之发展现状[J]. 岩性油气藏, 2008, 20(3): 6 -11 .
[5] 帅媛媛,王晓冬,孙 挺,周丛丛. 非牛顿幂律流体水平井产能分析方法[J]. 岩性油气藏, 2007, 19(3): 123 -125 .
[6] 彭学红, 何贞铭, 刘学锋. 大港油田小集官162 断块沉积相研究[J]. 岩性油气藏, 2008, 20(2): 66 -73 .
[7] 王辉, 张玉芬. 基于模型的叠前数据多参数非线性反演[J]. 岩性油气藏, 2008, 20(2): 108 -113 .
[8] 谢武仁,牛嘉玉,王洪亮,刘宝红. 辽河西斜坡鸳鸯沟地区岩性油气藏研究[J]. 岩性油气藏, 2008, 20(4): 75 -79 .
[9] 郑荣才,胡诚,董霞. 辽西凹陷古潜山内幕结构与成藏条件分析[J]. 岩性油气藏, 2009, 21(4): 10 -18 .
[10] 蔡涵鹏,贺振华,黄德济. 频率信息在碳酸盐岩礁滩储层含油气性预测中的应用[J]. 岩性油气藏, 2008, 20(4): 113 -117 .