岩性油气藏 ›› 2019, Vol. 31 ›› Issue (1): 130–138.doi: 10.12108/yxyqc.20190115

• 勘探技术 • 上一篇    下一篇

法国巴黎盆地枫丹白露砂岩电性响应特征

李晓, 李闽, 陈猛, 唐雁冰   

  1. 油气藏地质及开发工程国家重点实验室·西南石油大学, 成都 610500
  • 收稿日期:2018-09-17 修回日期:2018-11-19 出版日期:2019-01-18 发布日期:2019-01-18
  • 第一作者:李晓(1992-),女,西南石油大学在读硕士研究生,研究方向为油气田开发地质与岩石物理学。地址:(610500)四川省成都市新都区西南石油大学油气藏地质及开发工程国家重点实验室。Email:1135779150@qq.com。
  • 基金资助:
    国家重点基础研究发展(973计划)项目“致密油多相多尺度流动机理及渗流理论研究”(编号:2015CB250902)和石油化工联合基金(A类)项目“致密气多相多尺度流动规律及跨尺度耦合渗流”(编号:U1562217)联合资助

Electrical response characteristics of Fontainebleau sandstone in Paris Basin,France

LI Xiao, LI Min, CHEN Meng, TANG Yanbing   

  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
  • Received:2018-09-17 Revised:2018-11-19 Online:2019-01-18 Published:2019-01-18

摘要: 获取准确的电性特征参数是进行储层含油气饱和度评价的基础。选取不同物性范围内的9块法国巴黎盆地枫丹白露砂岩样品,开展岩石电性参数室内测试,并基于逾渗理论分析,提出了能表征储层岩石电性特征的新模型,并采用阿尔奇(Archie)公式和新模型对实验数据进行拟合分析。研究表明:高孔渗岩样的电性关系与经典Archie线性关系匹配较好,呈线性关系;中、低孔渗岩样在低含水饱和度条件的电性关系与Archie线性关系均出现一定程度偏离,表现为明显的非Archie特征,分析认为复杂的微观孔隙结构是诱发储层的电性关系与Archie线性关系为非线性关系的主要因素;基于Archie公式得到的饱和度指数n为0.948~1.820,与渗透率的平方相关性较好,与孔隙度的平方相关性较差;胶结指数m为1.6~1.9,岩性系数b为1.003~1.036,二者与孔隙度、渗透率的相关性均较差。研究认为新模型能更准确地表征复杂岩石电性的非线性特征,进一步丰富了储层含油气饱和度的评价方法。

关键词: 岩电参数, 地层因素, 电阻率指数, 非Archie现象, 含油气饱和度, 枫丹白露砂岩, 巴黎盆地

Abstract: The assessment for oil and gas saturation of reservoir rock is based on acquiring accurate electrical characteristic parameters. Nine samples of Fontainebleau sandstone with different physical properties in Paris Basin of France were selected to carry out laboratory testing of rock electrical parameters. On the basis of percolation theory,a new model was proposed to characterize the electrical characteristics of reservoir rocks,and the experimental data were fitted and analyzed by Archie formula and new model. The results show that the electrical property relationship of high porosity and permeability rock samples matches well with linear relationship of Archie's formula,showing a linear relationship. The electrical property relationship of medium and low permeability rock samples under low water saturation partly deviates from Archie linear relationship,showing obvious non-Archie features. It is considered that the complex micro-pore structure is the main factor inducing the non-linear relationship between the electrical properties of reservoirs and Archie's linear relationship. The saturation index n obtained by Archie formula is 0.948-1.820,which has a good correlation with the square of permeability and a poor correlation with the square of porosity. Cementation index m is 1.6-1.9,and lithology coefficient b is 1.003-1.036,both of which have poor correlations with porosity and permeability. The new model can accurately characterize the non-liner characteristics of rock electrical properties and enrich the evaluation methods of reservoir oil and gas saturation.

Key words: rock electrical parameters, formation factor, resistivity index, non-Archie phenomenon, oil and gas saturation, Fontainebleau sandstone, Paris Basin

中图分类号: 

  • TE122.2+3
[1] REVILA,KESSOURI P,TORRES-VERDÍN C. Electrical conductivity,induced polarization,and permeability of the Fontainebleau sandstone. Geophysics,2014,79(5):D301-D318.
[2] BOURBIE T,ZINSZNER B. Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone. Journal of Geophysical Research,1985,90(B13):11524-11532.
[3] YANICI S,ARNS J Y,CINAR Y,et al. Percolation effects of grain contacts in partially saturated sandstones:Deviations from Archie's law. Transport in Porous Media,2013,96(3):457-467.
[4] 车宇. 致密砂岩孔隙结构参数与电学性质关系研究. 成都:西南石油大学,2015. CHE Y. Study on the relationship between pore structure parameters and electrical properties of tight sandstone. Chengdu:Southwest Petroleum University,2015.
[5] 孙建国. 阿尔奇(Archie)公式:提出背景与早期争论. 地球物理学进展,2007,22(2):472-486. SUN J G. Archie's formula:Historical background and earlier debates. Progress in Geophysics,2007,22(2):472-486.
[6] DIEDERIX K M. Anomalous relationships between resistivity index and water saturations in the Rotliegend sandstone(The Netherlands). SPWLA Twenty-third Annual Logging Symposium,1982.
[7] SWANSON B F. Microporosity in reservoir rocks:its measurement and influence on electrical resistivity. SPWLA Twentysixth Annual Logging Symposium,1985.
[8] 黄蓬刚. 低渗透砂岩储层岩石渗流电性特征研究:以FJ及JZG储层为例. 西安:西安石油大学,2012. HUANG P G. Study on seepage electrical characteristics of low permeability sandstone reservoirs:take the FJ and JZG reservoirs as an example. Xi'an:Xi'an Shiyou University,2012.
[9] 李秋实,周荣安,张金功,等. 阿尔奇公式与储层孔隙结构的关系. 石油与天然气地质,2002,23(4):364-367. LI Q S,ZHOU R A,ZHANG J G,et al. Relationship between Archie's formula and reservoir pore structure. Oil & Gas Geology,2002,23(4):364-367.
[10] 游利军,康毅力,陈一健. 致密砂岩含水饱和度建立新方法-毛管自吸法.西南石油学院学报,2005,27(1):28-31. YOU L J,KANG Y L,CHEN Y J. New method of water saturation of tight gas-spontaneous imbibition. Journal of Southwest Petroleum Institute,2005,27(1):28-31.
[11] 韩学辉,李峰弼,戴蕾,等. 离心法和隔板法测量低渗透储层饱和度指数的对比. 中国石油大学学报:自然科学版,2014, 38(6):47-53. HAN X H,LI F B,DAI L,et al. Comparison of saturation exponent of low permeability reservoir obtained by centrifuge method and porous plate method. Journal of China University of Petroleum:Natural Science Edition,2014,38(6):47-53.
[12] CLAVIER C,COATES G,DUMANOIR J. Theoretical and experimental bases for the dual-water model for interpretation of shaly sands. Society of Petroleum Engineers Journal,1984,24(2):153-168.
[13] TABAGH A,COSENZA P. Effect of microstructure on the electrical conductivity of clay-rich systems. Physics and Chemistry of the Earth,2007,32:154-160.
[14] XIAO L,ZOU CC,MAO Z Q,et al. Estimation of water saturation from nuclear magnetic resonance(NMR)and conventional logs in low permeability sandstone reservoirs. Journal of Petroleum Science and Engineering,2013,108(15):40-51.
[15] 庞小军,代黎明,王清斌,等. 渤中凹陷西北缘东三段低渗透储层特征及控制因素. 岩性油气藏,2017,29(5):76-88. PANG X J,DAI L M,WANG Q B,et al. Characteristics and controlling factors of low permeability reservoirs of the third member of Dongying Formation in northwestern margin of the Bozhong Sag. Lithologic Reservoirs,2017,29(5):76-88.
[16] HARO C F. The equations Archie forgot:Anisotropy of the rocks. SPE 123913,2010:823-836.
[17] YUE W Z,TAO G. A new non-Archie model for pore structure:Numerical experiments using digital rock models. Geophysical Journal International,2013,195(1):282-291.
[18] MONTARON B. Connectivity theory:a new approach to modeling non-Archie rocks. Petrophysics,2009,50(2):102-115.
[19] SUMAN R J,KNIGHT R J. Effects of pore structure and wettability on the electrical resistivity of partially saturated rocks:a network study. Geophysics,1997,62(4):1151-1162.
[20] 韩学辉,匡立春,何亿成,等. 岩石电学性质实验研究方向展望. 地球物理学进展,2005,20(2):348-356. HAN X H,KUANG L C,HE Y C,et al. A view of the experimental study on rock electrical property. Progress in Geophysics, 2005,20(2):348-356.
[21] ARCJIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics. Petroleum Technology, 1942,146:54-61.
[22] TANG Y B,LI M,BERNABÉ Y,et al. A new electrical formation factor model for bimodal carbonates:Numerical studies using dual-pore percolation network. Geophysical Journal International,2015,201(3):1456-1470.
[23] 闫建平,梁强,耿斌,等. 低渗透砂岩微孔特征与孔隙结构类型的关系:以东营凹陷南斜坡沙四段为例. 岩性油气藏, 2017,29(3):18-26. YAN J P,LIANG Q,GENG B,et al. Relationship between micro-pore characteristics and pore structure of low permeability sandstone:a case of the fourth member of Shahejie Formation in southern slope of Dongying Sag. Lithologic Reservoirs, 2017,29(3):18-26.
[24] 曾源,陈世加,李士祥,等. 鄂尔多斯盆地正宁地区长8油层组储层特征. 岩性油气藏,2017,29(6):32-42. ZENG Y,CHEN S J,LI S X,et al. Characteristics of Chang 8 reservoir in Zhengning area,Ordos Basin. Lithologic Reservoirs,2017,29(6):32-42.
[25] 况晏,司马立强,瞿建华,等. 致密砂砾岩储层孔隙结构影响因素及定量评价:以玛湖凹陷玛131井区三叠系百口泉组为例. 岩性油气藏,2017,29(4):91-100. KUANG Y,SIMA L Q,QU J H,et al. Influencing factors and quantitative evaluation for pore structure of tight glutenite reservoir:a case of the Triassic Baikouquan Formation in Ma 131 well field,Mahu Sag. Lithologic Reservoirs,2017,29(4):91-100.
[26] CHEN M,LI M,WANG Y,et al. The permeability of Fontainebleau sandstone to gases and liquids. Petroleum Science and Technology,2016,34(9):845-852.
[27] 李闽,王浩,陈猛. 致密砂岩储层可动流体分布及影响因素研究:以吉木萨尔凹陷芦草沟组为例. 岩性油气藏,2018,30(1):140-149. LI M,WANG H,CHEN M. Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs:a case study of Lucaogou Formation in Jimsar Sag,NW China. Lithologic Reservoirs,2018,30(1):140-149.
[28] 罗少成,成志刚,周金昱,等.致密砂岩储层饱和度指数n计算方法研究. 西南石油大学学报(自然科学版),2014,36(4):116-122. LUO S C,CHENG Z G,ZHOU J Y,et al. Research on saturation index n of tight sandstone reservoir. Journal of Southwest Petroleum University(Natural & Technology Edition),2014, 36(4):116-122.
[29] 王维斌,朱静,马文忠,等. 鄂尔多斯盆地周家湾地区长8致密砂岩储层特征及影响因素. 岩性油气藏,2017,29(1):51-58. WANG W B,ZHU J,MA W Z,et al. Characteristics and influencing factors of Chang 8 tight sandstone reservoir of Triassic Yanchang Formation in Zhoujiawan area,Ordos Basin. Lithologic Reservoirs,2017,29(1):51-58.
[30] 楚翠金,夏志林,杨志强. 延川南区块致密砂岩气测井识别与评价技术. 岩性油气藏,2017,29(2):131-138. CHU C J,XIA Z L,YANG Z Q. Logging identification and evaluation of tight sandstone gas in the southern Yanchuan block. Lithologic Reservoirs,2017,29(2):131-138.
[1] 李梦莹, 朱如凯, 胡素云. 海外陆相页岩油地质特征与资源潜力[J]. 岩性油气藏, 2022, 34(1): 163-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .