岩性油气藏 ›› 2024, Vol. 36 ›› Issue (3): 1–18.doi: 10.12108/yxyqc.20240301

• 地质勘探 • 上一篇    下一篇

松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义

何文渊1, 赵莹2, 钟建华3,4, 孙宁亮3   

  1. 1. 中国石油国际勘探开发有限公司, 北京 100032;
    2. 黑龙江省陆相页岩油重点实验室, 黑龙江 大庆 163712;
    3. 东北大学 海洋工程研究院, 河北 秦皇岛 066004;
    4. 中国石油大学(华东)地球科学与技术学院, 山东 青岛 266580
  • 收稿日期:2023-03-13 修回日期:2023-08-22 出版日期:2024-05-01 发布日期:2024-04-30
  • 第一作者:何文渊(1974—),男,博士,教授级高级工程师,主要从事石油地质和油气勘探开发方面的研究工作。地址:(100032)北京市西城区阜成门北大街 6-1,国投大厦 D 座。Email:hewenyuan@cnpcint.com。
  • 通信作者: 钟建华(1957—),男,博士,教授,主要从事沉积学和构造地质学方面的研究与教学工作。Email:957576033@qq.com。
  • 基金资助:
    中国石油天然气股份有限公司科技重大专项“大庆古龙页岩油勘探开发理论与关键技术研究”(编号:2021ZZ10)及黑龙江省“百千万”工程科技重大专项“松辽盆地北部古龙页岩油成藏条件及甜点分布规律研究”(编号:2020ZX05A01)联合资助。

Characteristics and significance of micron pores and micron fractures in shale oil reservoirs of Cretaceous Qingshankou Formation in Gulong sag,Songliao Basin

HE Wenyuan1, ZHAO Ying2, ZHONG Jianhua3,4, SUN Ningliang3   

  1. 1. China National Oil and Gas Exploration and Development Company Ltd., Beijing 100032, China;
    2. Heilongjiang Provincial Key Laboratory of Continental Shale Oil, Daqing 163712, Heilongjiang, China;
    3. Ocean Engineering Research Institute, Northeastern University, Qinhuangdao 066004, Hebei, China;
    4. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, Shandong, China
  • Received:2023-03-13 Revised:2023-08-22 Online:2024-05-01 Published:2024-04-30

摘要: 通过岩心观察、薄片鉴定、电子背散射、二次成像及能谱分析等多种实验手段,对松辽盆地古龙凹陷白垩系青山口组页岩油储层中的微米孔和微米缝进行了研究。研究结果表明:①古龙凹陷页岩油储层岩性为以页岩为主的细粒碎屑岩,矿物成分以黏土和长英质为主,在结构上显示出泥岩或页岩的特点,整体为长英质页岩;储层中微米孔、缝发育,类型多样。②研究区微米孔直径一般为 1~2 μm,最大可达70 μm,多呈近圆形、扁圆形、多角形和不规则形,按成因可分为压实应力屏蔽孔、成岩自生孔、溶蚀孔、生排烃扩张孔、有机质孔和硅藻残留孔 6 类;压实应力屏蔽孔多发育在刚性矿物的两侧;成岩自生孔常发育在白云石、绿泥石、伊利石等成岩自生矿物中,以晶间孔为主;溶蚀孔多发育在碳酸盐矿物中,内部可见次生菌丝状絮凝体;生排烃扩张孔多呈垂直或近垂直成列产出,与轻质油形成的二次生烃和排烃有关;有机质孔发育在有机质内部,与植物的残留细胞及轻质油和天然气的充填有关;硅藻残留孔主要发育在硅藻内部和边缘,孔径较大,一般为数微米至数十微米。③研究区微米缝以顺层为主,宽一般为 1~10 μm,最大可达100 μm,长主要为数微米至数十微米,可见毫米级;可分为成岩收缩缝、溶蚀缝、生排烃扩张缝和构造/剪切缝4类,成岩收缩缝以张性缝为主,缝弯曲,缝壁参差不齐;溶蚀缝宽度可达 60~70 μm,裂缝内可见自生黏土,缝两侧有黄铁矿、磷灰石和白云石等自生矿物;生排烃扩张缝两侧多锯齿状参差不齐,绕过刚性矿物;构造/剪切微米缝一般平直,有与剪切相关的其他裂缝伴生。④研究区不同尺度的孔、缝之间连通性较好,形成了“纳米孔+纳米缝、微米孔+微米缝、毫米孔+毫米缝”三级储集和输导体系。

关键词: 微米孔, 微米缝, 储集空间, 连通性, 页岩油储层, 青山口组, 白垩系, 古龙凹陷, 松辽盆地

Abstract: By means of core observation, thin section identification, electron backscattering, secondary imaging and energy spectrum analysis, the micron pores and micron fractures in shale oil reservoirs of Cretaceous Qing‐ shankou Formation in Gulong sag of Songliao Basin were studied. The results show that:(1)The lithologies of shale oil reservoirs in Gulong sag are fine-grained clastic rocks dominated by shale, and the mineral composition is mainly clay and felsic, showing the characteristics of mudstone or shale in structure, and the whole reservoir is felsic shale. Micron pores and micron fractures are developed in reservoirs with various types.(2)The diameter of micron pores in the study area is generally 1-2 μm, and the maximum can reach 70 μm, and they are nearly round, oblate, polygonal and irregular. According to the genesis, they can be divided into six types:compaction stress shielding pores, diagenetic authigenic pores, dissolved pores, hydrocarbon generation and expulsion expansion pores, organic matter pores and diatom residual pores. Compaction stress shielding pores are mostly developed on both sides of rigid minerals. Diagenetic authigenic pores are often developed in authigenic minerals such as dolo‐ mite, chlorite and illite, mainly intergranular pores. Dissolved pores are mostly developed in carbonate minerals, and secondary mycelial floccules can be seen inside. Hydrocarbon generation and expulsion expansion pores are mostly produced in vertical or nearly vertical rows, which is related to the secondary hydrocarbon generation and expulsion formed by light oil. Organic matter pores develop in organic matter and are related to residual cells of plants and filling of light oil and natural gas. Diatom residual pores mainly develop in the interior and edge of dia‐ toms, with large sizes ranging from several microns to tens of microns.(3)The micron fractures in the study area are mainly bedding, with a width of 1-10 μm and a maximum of 100 μm, and a length of several microns to tens of microns. They can be divided into four types:diagenetic shrinkage fractures, dissolved fractures, hydrocarbon generation and expulsion expansion fractures and structural/shear fractures. The diagenetic shrinkage fractures are mainly tensile fractures, with curved fractures and uneven fracture wall. The width of dissolved fractures can reach 60-70 μm, authigenic clay can be seen in the fractures, and authigenic minerals such as pyrite, apatite and dolomite can be found on both sides of the fracture. Both sides of hydrocarbon generation and expulsion expan‐ sion fractures are jagged and uneven, bypassing rigid minerals. Structural/shear micron fractures are generally straight, accompanied by other fractures related to shear.(4)The connectivity between pores and fractures of dif‐ ferent scales in the study area is good, forming a three-level reservoir and transport system of“nano-pores + nanofractures, micron-pores + micron-fractures, millimeter-pores + millimeter-fractures”.

Key words: micron pore, micron fracture, reservoir space, connectivity, shale oil reservoir, Qingshankou Formation, Cretaceous, Gulong sag, Songliao Basin

中图分类号: 

  • TE122.2
[1] 邹才能,张国生,杨智,等. 非常规油气概念、特征、潜力及技术:兼论非常规油气地质学[J]. 石油勘探与开发,2013,40(4):385-454. ZOU Caineng,ZHANG Guosheng,YANG Zhi,et al. Geological concepts,characteristics,resource potential and key techniques of unconventional hydrocarbon:On unconventional petroleum geology[J]. Petroleum Exploration and Development,2013,40(4):385-454.
[2] 金之钧,白振瑞,高波,等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质,2019,40(3):451-458. JIN Zhijun,BAI Zhenrui,GAO Bo,et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology,2019, 40(3):451-458.
[3] 孙焕泉. 济阳坳陷页岩油勘探实践与认识[J]. 中国石油勘探,2017,22(4):1-14. SUN Huanquan. Exploration practice and cognitions of shale oil in Jiyang Depression[J]. China Petroleum Exploration,2017, 22(4):1-14.
[4] 庞彦明,张元庆,蔡敏,等. 松辽盆地古龙页岩油水平井开发技术经济界限[J]. 大庆石油地质与开发,2021,40(5):134-143. PANG Yanming,ZHANG Yuanqing,CAI Min,et al. Technical and economic limit of horizontal well development for Gulong shale oil in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2021,40(5):134-143.
[5] 高瑞祺. 泥岩异常高压带油气的生成排出特征与泥岩裂缝油气藏的形成[J]. 大庆石油地质与开发,1984,3(1):160-167. GAO Ruiqi. Characteristics of petroleum generation and expulsion in abnormal pressure shale zones and the formation of fractured shale reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing,1984,3(1):160-167.
[6] 孙龙德. 古龙页岩油(代序)[J]. 大庆石油地质与开发, 2020,39(3):1-7. SUN Longde. Gulong shale oil(preface)[J]. Petroleum Geology & Oilfield Development in Daqing,2020,39(3):1-7.
[7] 何文渊,蒙启安,张金友. 松辽盆地古龙页岩油富集主控因素及分类评价[J]. 大庆石油地质与开发,2021,40(5):1-12. HE Wenyuan,MENG Qi'an,ZHANG Jinyou. Controlling factors and their classification-evaluation of Gulong shale oil enrichment in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2021,40(5):1-12.
[8] 何文渊. 松辽盆地古龙页岩油储层黏土中纳米孔和纳米缝的发现及其意义[J]. 大庆石油地质与开发,2022,41(1):1-15. HE Wenyuan. Discovery and significance of nano pores and nano fractures of clay in Gulong shale oil reservoir in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022,41(1):1-15.
[9] 何文渊,崔宝文,王凤兰,等. 松辽盆地古龙凹陷白垩系青山口组储集空间与油态研究[J]. 地质论评,2022,68(2):693-741. HE Wenyuan,CUI Baowen,WANG Fenglan,et al. Study on reservoir spaces and oil states of the Cretaceous Qingshankou Formation in Gulong Sag,Songliao Basin[J]. Geological Review, 2022,68(2):693-741.
[10] 何文渊,蒙启安,冯子辉,等. 松辽盆地古龙页岩油原位成藏理论认识及勘探开发实践[J]. 石油学报,2022,43(1):1-13. HE Wenyuan,MENG Qi'an,FENG Zihui,et al. In-situ accumulation theory and exploration & development practice of Gulong shale oil in Songliao Basin[J]. Acta Petrolei Sinica,2022,43(1):1-13.
[11] 王凤兰,付志国,王建凯,等. 松辽盆地古龙页岩油储层特征及分类评价[J]. 大庆石油地质与开发,2021,40(5):144-156. WANG Fenglan,FU Zhiguo,WANG Jiankai,et al. Characteristics and classification evaluation of Gulong shale oil reservoir in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2021,40(5):144-156.
[12] 王广昀,王凤兰,蒙启安,等. 古龙页岩油战略意义及攻关方向[J]. 大庆石油地质与开发,2020,39(3):8-19. WANG Guangyun,WANG Fenglan,MENG Qi'an,et al. Strategic significance and research direction for Gulong shale oil[J]. Petroleum Geology & Oilfield Development in Daqing,2020, 39(3):8-19.
[13] 崔宝文,张顺,付秀丽,等. 松辽盆地古龙页岩有机层序地层划分及影响因素[J]. 大庆石油地质与开发,2021,40(5):13-28. CUI Baowen,ZHANG Shun,FU Xiuli,et al. Organic sequence stratigraphic division and its influencing factors'analysis for Gulong shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2021,40(5):13-28.
[14] 王永卓,王瑞,代旭,等. 松辽盆地古龙页岩油水平井箱体开发设计方法[J]. 大庆石油地质与开发,2021,40(5):157-169. WANG Yongzhuo,WANG Rui,DAI Xu,et al. Compartment development design method of horizontal well for Gulong shale oil in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2021,40(5):157-169.
[15] 冯子辉,霍秋立,曾花森,等. 松辽盆地古龙页岩有机质组成与有机质孔形成演化[J]. 大庆石油地质与开发,2021,40(5):40-55. FENG Zihui,HUO Qiuli,ZENG Huasen,et al. Organic matter compositions and organic pore evolution in Gulong shale of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2021,40(5):40-55.
[16] 邵红梅,高波,潘会芳,等. 松辽盆地古龙页岩成岩-孔隙演化[J]. 大庆石油地质与开发,2021,40(5):56-67. SHAO Hongmei,GAO Bo,PAN Huifang,et al. Diagenesis-pore evolution for Gulong shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2021,40(5):56-67.
[17] 刘德来,陈发景,关德范,等. 松辽盆地形成、发展与岩石圈动力学[J]. 地质科学,1996,31(4):397-408. LIU Delai,CHEN Fajing,GUAN Defan,et al. A study on lithospheric dynamics of the origin and evolution in the Songliao Basin[J]. Scientia Geologica Sinica,1996,31(4):397-408.
[18] 陈昭年,陈发景. 松辽盆地反转构造运动学特征[J]. 现代地质,1996,10(3):390-396. CHEN Zhaonian,CHEN Fajing. Kinematic characteristics of inversion structure in Songliao Basin[J]. Geoscience-Journal of Graduate School,China University of Geosciences,1996,10(3):390-396.
[19] SONG Ying,STEPASHKO A,LIU Keyu,et al. Post-rift tectonic history of the Songliao Basin,NE China:Cooling events and postrift unconformities driven by orogenic pulses from plate boundaries[J]. Journal of Geophysical Research:Solid Earth,2018, 123:2363-2395.
[20] SCHIEBER J,REMUS L,KEVIN B,et al. An SEM study of porosity in the eagle ford shale of texas:Pore types and porosity distribution in a depositional and sequence stratigraphic context[G]//BREYER J A. AAPG Memoir 110,2016:167-186.
[21] LOUCKS R G,REED R M,RUPPEL S,et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix related mudrock pores[J]. AAPG Bulletin, 2012,96(6):1071-1098.
[22] SCHIEBER J. Shale microfabrics and pore development:An overview with emphasis on the importance of depositional processes[R]. Calgary:CSPG CSEG CWLS Annual Convention, 2011.
[23] SCHIEBER J. Common themes in the formation and preservation of intrinsic porosity in shale and mudstones-illustrated with examples across the phanerozoic[J]. SPE 132370,2010.
[24] SALMAN B,ROBERT H L,LINDA B. Anomalously high porosity and permeability in deeply buried sandstone reservoirs:Origin and predictability[J]. AAPG Bulletin,2002,86(2):301-328.
[25] LOUCKS R G,REED R M,RUPPEL S C,et al. Preliminary classification of matrix pores in mudrocks[J]. Gulf Coast Association of Geological Societies Transactions,2010,60:435-441.
[26] PIERCE J W,NICHOLS M M. Change of particle composition from fluvial into an estuarine environment:Rappahannock river, Virginia[J]. Journal of Coastal,1986,2(4):419-425.
[27] 何文渊,赵莹,钟建华,等. 松辽盆地古龙凹陷青山口组页岩油储层中有机质微孔特征[J]. 地质论评,地质论评,2023,69(3):1161-1183. HE Wenyuan,ZHAO Ying,ZHONG Jianhua,et al. Study on organic matter and micropores of Qingshankou Formation shale oil reservoir in Gulong Sag,Songliao Basin[J]. Geological Review,2023,69(3):1161-1183.
[28] KWON O A K,KRONENBERG A F,GANGI B J,et al. Permeability of illite bearing shale:1. Anisotropy and effects of clay content and loading[J]. Journal of Geophysical Research Atmospheres,2004,109:B10205.
[29] NILS K,RAINER D,MANFRED S. Polycationic Peptides from diatom biosilica that direct silica nanosphere formation[J]. Science,1999,286(5):1129-1132.
[30] CONTRERAS A,GARCÍA F,MOLINA E,et al. Interaction between CO 2-mass transfer,light availability,and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor[J]. Biotechnology & Bioengineering,1998,60(3):317-325.
[31] 孙宗颀,张国报,张景和. 在地质断层构造中地应力状态演变研究[J]. 石油勘探与开发,2000,27(1):102-105. SUN Zongqi,ZHANG Guobao,ZHANG Jinghe. Study of in situ stress state evolution in geologic fault structure[J]. Petroleum Exploration and Development,2000,27(1):102-105.
[32] DURANTI D,HURST A,BELL C,et al. Injected and remobilized Eocene sandstones from the Alba Field,UKCS:Core and wireline log charact eristics[J]. Petroleum Geoscience,2002,8(2):99-107.
[33] 马锋,刘立,钟建华,等. 大港滩海区沙一段下部水力破裂特征模拟实验[J]. 石油学报,2006,27(6):60-69. MA Feng,LIU Li,ZHONG Jianhua,et al. Modeling on characteristics of hydraulic fracturing in the lower first member of Shahejie Formation in Dagang beach[J]. Acta Petrolei Sinica, 2006,27(6):60-69.
[34] DOYLE E H,MCCLELLAND B H,FERGUSON G H. Wire line vane probe for deep penetration measurements of ocean sediment strength[R]. Houston,Texas:Offshore Technology Conference Preprints,1971.
[35] BEA R G,ARNOLD. Movements and forces developed by wave induced slides in soft clay[R]. Houston,TX:Fifth Annual Offshore Technology Conference,1973.
[36] MOON C F,HURST C W. Fabric of muds and shales:An overview[J]. Geological Society,London,Special Publications,1984, 15(1):579-593.
[1] 冉逸轩, 王健, 张熠. 松辽盆地北部中央古隆起基岩气藏形成条件与有利勘探区[J]. 岩性油气藏, 2024, 36(6): 66-76.
[2] 屈卫华, 田野, 董常春, 郭小波, 李立立, 林斯雅, 薛松, 杨世和. 松辽盆地德惠断陷白垩系烃源岩特征及其控藏作用[J]. 岩性油气藏, 2024, 36(6): 122-134.
[3] 肖博雅. 二连盆地阿南凹陷白垩系凝灰岩类储层特征及有利区分布[J]. 岩性油气藏, 2024, 36(6): 135-148.
[4] 王洪星, 韩诗文, 胡佳, 潘志浩. 松辽盆地德惠断陷白垩系火石岭组凝灰岩储层预测及成藏主控因素[J]. 岩性油气藏, 2024, 36(5): 35-45.
[5] 周洪锋, 吴海红, 杨禹希, 向红英, 高吉宏, 贺昊文, 赵旭. 二连盆地巴音都兰凹陷B51井区白垩系阿四段扇三角洲前缘沉积特征[J]. 岩性油气藏, 2024, 36(4): 85-97.
[6] 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84.
[7] 徐田录, 吴承美, 张金凤, 曹爱琼, 张腾. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024, 36(4): 35-43.
[8] 杨为华. 松辽盆地双城断陷白垩系营城组四段致密油成藏主控因素及模式[J]. 岩性油气藏, 2024, 36(4): 25-34.
[9] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
[10] 李长海, 赵伦, 刘波, 赵文琪, 王淑琴, 李建新, 郑天宇, 李伟强. 滨里海盆地东缘北特鲁瓦油田石炭系碳酸盐岩储层裂缝网络连通性评价[J]. 岩性油气藏, 2024, 36(2): 113-123.
[11] 史卜庆, 丁梁波, 马宏霞, 孙辉, 张颖, 许小勇, 王红平, 范国章. 东非海域大型深水沉积体系及油气成藏特征[J]. 岩性油气藏, 2023, 35(6): 10-17.
[12] 马文杰, 王景春, 田作基, 马中振, 万学鹏, 林金逞, 许翔麟, 周玉冰. 南美洲Oriente盆地斜坡带W区块构造-岩性复合油藏成藏模式及有利区预测[J]. 岩性油气藏, 2023, 35(6): 29-36.
[13] 范蕊, 刘卉, 杨沛广, 孙星, 马辉, 郝菲, 张珊珊. 阿曼盆地A区白垩系泥岩充填型碳酸盐岩溶蚀沟谷识别技术[J]. 岩性油气藏, 2023, 35(6): 72-81.
[14] 罗贝维, 尹继全, 胡广成, 陈华, 康敬程, 肖萌, 朱秋影, 段海岗. 阿联酋西部地区白垩系森诺曼阶高孔渗灰岩储层特征及控制因素[J]. 岩性油气藏, 2023, 35(6): 63-71.
[15] 刘计国, 周鸿璞, 秦雁群, 邹荃, 郑凤云, 李早红, 肖高杰. 非洲Muglad盆地Fula凹陷白垩系AG组岩性油气藏勘探潜力[J]. 岩性油气藏, 2023, 35(6): 82-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .