油气地质

A 地区页岩气储层总有机碳含量测井评价方法研究

  • 柳双权 ,
  • 曹元婷 ,
  • 赵光亮 ,
  • 朱军 ,
  • 史基安 ,
  • 张顺存
展开
  • 1.长江大学 地球物理与石油资源学院,武汉 430100; 2.长江大学 油气资源与勘探技术教育部 重点实验室,武汉 430100; 3.中国石油集团 东方地球物理有限公司,河北 涿州 072750
熊镭(1988-),男,长江大学在读硕士研究生,研究方向为地球物理测井综合解释。 地址:(430100)湖北省武汉市蔡甸区长江大学。E-mail:xiongzy71@gmail.com。

网络出版日期: 2014-06-06

基金资助

湖北省自然科学基金项目“基于等效岩石单元模型的渗透率测井评价方法研究”(编号:2013CFB396)资助

Research on logging evaluation method of TOC content of shale gas reservoir in A area

  • LIU Shuangquan ,
  • CAO Yuanting ,
  • ZHAO Guangliang ,
  • ZHU Jun ,
  • SHI Ji’an ,
  • ZHANG Shuncun
Expand
  • 1. Geophysics and Oil Resource Institute, Yangtze University, Wuhan 430100, China; 2. Key Laboratory of Exploration Technologies for Oil & Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, China; 3. Bureau of Geophysics Prospecting Inc., CNPC, Zhuozhou 072750, Hebei, China

Online published: 2014-06-06

摘要

页岩气储层中总有机碳含量(TOC)反映了页岩的生烃潜力,准确获取页岩气储层 TOC 含量对页岩 气的开发具有重要意义。 利用测井资料的连续性和纵向分辨率高等特点,建立精度较高的 TOC 测井评 价模型。 在分析几种常用 TOC 测井评价方法限制因素的基础上,结合 A 地区岩性变化复杂的实际情况, 建立了 BP 神经网络预测 TOC、拟合方法计算 TOC、基于干酪根含量计算 TOC 共 3 种模型,并对该地区 X 井页岩进行了 TOC 含量评价。 结果表明:在 A 地区采用 BP 神经网络预测 TOC 模型其精度最高,可 为岩性复杂地区的 TOC 含量评价提供技术支持。

本文引用格式

柳双权 , 曹元婷 , 赵光亮 , 朱军 , 史基安 , 张顺存 . A 地区页岩气储层总有机碳含量测井评价方法研究[J]. 岩性油气藏, 2014 , 26(3) : 74 -78 . DOI: 10.3969/j.issn.1673-8926.2014.03.012

Abstract

Total organic carbon(TOC) content of shale gas reservoir reflects the hydrocarbon generation potential of shale rocks. It has an important guiding significance for shale gas development to obtain the TOC content accurately by use of conventional logging data which has characteristics of continuousness and high vertical resolution. Therefore, it is especially important to establish highly precise model of the organic carbon content evaluation. Combining the limiting factors of TOC content evaluation methods with the reality of complex lithological changes of A area, we established three kinds of TOC content models to evaluate shale rocks from X well in A area. They are BP neural network, uranium and kerogen. It is concluded that the BP neural network model is with the highest precision to forecast the total organic carbon content, and provide technical support to TOC content evaluation in complex lithology areas.

参考文献

[1] 郝建飞,周灿灿,李霞,等.页岩气地球物理测井评价综述[J].地球物理学进展,2012,27(4):1624-1632.
[2] 曲彦胜,钟宁宁,刘岩,等.烃源岩有机质丰度的测井计算方法及影响因素探讨[J].岩性油气藏,2011,23(2):80-84.
[3] Fertle H. Total organic carbon content determined from well logs[G]. SPE Formation Evaluation 15612,1988:407-419.
[4] Passey Q R,Moretti F U,Stroud J D. A practical model for organic richness from porosity and resistivity logs [J]. AAPG Bulletion,1990,74(12):1777-1794.
[5] 朱光有,金强,张林晔.用测井信息获取烃源岩的地球化学参数研究[J].测井技术,2003,27(2):104-109.
[6] Carpentier B,Bessereau G. Wireline logging and source rocks-estimation of organic carbon content by the CARBOLBG method [J].The Log Analysts,1991,32(3):279-297.
[7] Schmoker J W,Hester T C. Organic carbon in Bakken Formation,United States portion of Williston Basin[J]. AAPG Bulletion,1983,67(12):2165-2174.
[8] Kwiatkowsky J,Galford J,Quirein J. Predicting pyrite and total organic carbon from well logs for enhancing shale reservoir interpretation[R]. SPE 161097,2012.
[9] 郭龙,陈践发,苗忠英.一种新的TOC 含量拟合方法研究与应用[J].天然气地球科学,2009,20(6):951-956.
[10] Huang Zehui,Williamson M A. Artificial neural network modeling as an aid to source rock characterization[J]. Marine and Petroleum Geology,1996,13(2):277-290.
[11] 史峰,王小川,郁磊,等. MATLAB 神经网络30 个经典案例[M].北京:北京航空航天大学出版社,2010.
[12] 杨建,杨程博,张岩,等.基于改进神经网络的渗透率预测方法[J].岩性油气藏,2011,23(1):98-102.
[13] 郝红卫,蒋蓉蓉.基于最近邻规则的神经网络训练样本选择方法[J].自动化学报,2007,33(12):1247-1251.
文章导航

/