A 地区页岩气储层总有机碳含量测井评价方法研究
网络出版日期: 2014-06-06
基金资助
湖北省自然科学基金项目“基于等效岩石单元模型的渗透率测井评价方法研究”(编号:2013CFB396)资助
Research on logging evaluation method of TOC content of shale gas reservoir in A area
Online published: 2014-06-06
页岩气储层中总有机碳含量(TOC)反映了页岩的生烃潜力,准确获取页岩气储层 TOC 含量对页岩 气的开发具有重要意义。 利用测井资料的连续性和纵向分辨率高等特点,建立精度较高的 TOC 测井评 价模型。 在分析几种常用 TOC 测井评价方法限制因素的基础上,结合 A 地区岩性变化复杂的实际情况, 建立了 BP 神经网络预测 TOC、拟合方法计算 TOC、基于干酪根含量计算 TOC 共 3 种模型,并对该地区 X 井页岩进行了 TOC 含量评价。 结果表明:在 A 地区采用 BP 神经网络预测 TOC 模型其精度最高,可 为岩性复杂地区的 TOC 含量评价提供技术支持。
柳双权 , 曹元婷 , 赵光亮 , 朱军 , 史基安 , 张顺存 . A 地区页岩气储层总有机碳含量测井评价方法研究[J]. 岩性油气藏, 2014 , 26(3) : 74 -78 . DOI: 10.3969/j.issn.1673-8926.2014.03.012
Total organic carbon(TOC) content of shale gas reservoir reflects the hydrocarbon generation potential of shale rocks. It has an important guiding significance for shale gas development to obtain the TOC content accurately by use of conventional logging data which has characteristics of continuousness and high vertical resolution. Therefore, it is especially important to establish highly precise model of the organic carbon content evaluation. Combining the limiting factors of TOC content evaluation methods with the reality of complex lithological changes of A area, we established three kinds of TOC content models to evaluate shale rocks from X well in A area. They are BP neural network, uranium and kerogen. It is concluded that the BP neural network model is with the highest precision to forecast the total organic carbon content, and provide technical support to TOC content evaluation in complex lithology areas.
Key words: Carboniferous; volcanic rock; reservoir; influencing factors; Junggar Basin
/
〈 |
|
〉 |