技术方法

珠江口盆地文昌地区珠江组一段低阻成因分析与饱和度评价

  • 徐祖新
展开
  • 1.中海石油(中国)有限公司 湛江分公司,广东 湛江 524057; 2.中国石油长城钻探工程有限公司 测井公司,辽宁 盘锦 124000
陈嵘(1985-),女,硕士,工程师,主要从事测井资料处理与综合解释方面的工作。 地址:(524057)广东省湛江市坡头区南油一区研究院广发楼八楼测井室。 E-mail:chenrong1@cnooc.com.cn。

网络出版日期: 2014-10-20

基金资助

国家重大科技专项课题“近海富烃凹陷资源潜力再评价和新区、新领域勘探方向”(编号:2011ZX05023-001)资助

Genesis of low resistivity oil layer and evaluation of water saturation of the first member of Zhujiang Formation in Wenchang area, Pearl River Mouth Basin

  • XU Zuxin
Expand
  • 1. Zhanjiang Branch of CNOOC Ltd., Zhanjiang 524057, Guangdong, China; 2. Well Logging Company, CNPC Great Wall Drilling Company, Panjin 124000, Liaoning, China

Online published: 2014-10-20

摘要

珠江口盆地文昌地区珠江组一段储层泥质含量高,油层与水层的电阻率差异较小,给测井解释带来 了一定困难。 通过对研究区储层进行岩性统计分析、薄互层电阻率成像资料研究及多矿化度岩石-电阻 率实验,并综合分析各种因素对地层电阻率的影响。 结果表明:岩性细、泥质含量高、束缚水含量高和中等 地层水矿化度均是导致油层电阻率低的因素。 在明确珠江组一段低阻成因的基础上,运用三水模型评价 了该区低阻油层的含水饱和度,模型计算结果与密闭取心分析结果吻合度较高。

本文引用格式

徐祖新 . 珠江口盆地文昌地区珠江组一段低阻成因分析与饱和度评价[J]. 岩性油气藏, 2014 , 26(5) : 97 -101 . DOI: 10.3969/j.issn.1673-8926.2014.05.018

Abstract

 The reservoir of the first member of Zhujiang Formation in Wenchang area of Pearl River Mouth Basin is characterized by high content of shale, and the difference of resistivity between oil layer and water layer is little. So it is difficult to identify the oil-bearing reservoir and water-bearing reservoir by well logging interpretation. Based on the analysis of reservoir lithology, imaging data of thin interbed and litho-electric experiment in various salinity conditions, this paper studied the impact of different factors on the formation resistivity. The results show that the main causes of low resistivity oil layer are fine lithology, high content of shale, high content of irreducible water saturation and middle formation water salinity. Based on the genesis of low resistivity, tri-water model was used to evaluate the water saturation of low resistivity oil layer in the study area. The calculation results are consistent with the sealed coring results.

参考文献

[1]郑雷清.综合识别方法在低阻油气层勘探中的应用[J].岩性油气藏,2007,19(2):71-75.
[2]雍世和,张超谟.测井数据处理与综合解释[M].北京:石油大学出版社,1996.
[3]张丽华,潘保芝,李宁,等.基于三水模型的储层分类方法评价低孔隙度低渗透率储层[J].测井技术,2011,35(1):31-35.
[4]赵留运,陈清华,刘强.低电阻率油层研究现状[J].油气地质与采收率,2007,14(1):22-25.
[5]莫修文,贺铎华,李舟波,等.三水导电模型及其在低阻储层解释中的应用[J] .长春科技大学学报,2001,31(1):92-95.
[6]赵杏媛.粘土矿物与油气[J].新疆石油地质,2009,30(4):533-536.
[7]周康,刘佳庆,段国英,等.吴起地区长 61 油层黏土矿物对油层低电阻率化的影响[J].岩性油气藏,2012,24(2):26-30.
[8]王博,赵军,王淼,等.断块低阻油层测井识别与评价[J].岩性油气藏,2012,24(6):110-114.
[9]潘和平,黄坚,樊政军,等.低电阻率油气层测井评价[J].勘探地球物理进展,2002,25(6):11-17.
[10]莫修文,王宏建,许淑梅,等.用测井资料确定储层三孔隙组分的理论与方法[J].吉林大学学报:地球科学版,2005,35(专辑):80-83.
[11]卞应时,张凤敏,高祝军,等.大港油田中浅层低阻油气层成因分析及评价[J].特种油气藏,2002,9(2):26-28.
文章导航

/