Lithologic Reservoirs ›› 2018, Vol. 30 ›› Issue (5): 82-90.doi: 10.12108/yxyqc.20180510
Previous Articles Next Articles
PENG Da1,2, XIAO Fusen1, RAN Qi1, XIE Bing1, CHEN Xiao1, ZHANG Fuhong1, CHEN Kang1, XU Xiang1
CLC Number:
[1] BIOT M A. Theory of propagation of elastic waves in a fluid saturated porous solid. Ⅰ:Low frequency range,and Ⅱ:Higherfrequency range. Journal of the Acoustical Society of America, 1956,28(2):168-196. [2] GASSMANN F. Elastic waves through a packing of spheres. Geophysics,1951,16(4):673-682. [3] AMENT W. Sound propagation in gross mixtures. Journal of the Acoustical Society of America,1953,25(4):638-641. [4] ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion,and related problems. Proceedings of the Royal Society of London,1957,A241:376-396. [5] WALSH J B. The effect of cracks on the compressibility of rock. Journal of Geophysical Research,1965,70(2):381-389. [6] WU T T. The effect of inclusion shape on the elastic moduli of a two-phase material. International Journal of Solids and Structures,1966,2(1):1-8. [7] KUSTER G T,TOKSöZ M N. Velocity and attenuation of seismic waves in two-phase media. Geophysics,1974,39(5):587-606. [8] O'CONNELL R J,BUDIANSKY B. Seismic velocities in dry and saturated cracked solids. Journal of Geophysical Research, 1974,79(35):4626-4627. [9] BERRYMAN J G. Long-wavelength propagation in composite elastic media. Journal of the Acoustical Society of America, 1980,68(6):1809-1831. [10] ZIMMERMAN R W. The elastic moduli of a solid with spherical pores:New self-consistent method. International Journal of Rock Mechanics and Mining Sciences,Geomechanics Abstracts, 1984,21(6):339-343. [11] WALTON K. The effective elastic moduli of a random packing of spheres. Mech Phys Solids,1987,35(2):213-226. [12] DIGBY P J. The effective elastic moduli of porous granular rocks. Journal of Applied Mechanics,1981,48(4):803-808. [13] NORRIS A N,JOHNSON D L. Nonlinear elasticity of granular media. Physica B Physics of Condensed Matter,2000,279(1):134-138. [14] MINDLIN R D. Compliance of elastic bodies in contact. Journal of Applied Mechanics,1949,16(3):259-268. [15] DVORKIN J,NUR A,YIN H. Effective properties of cemented granular material. Mechanics of Materials,1994,18(4):351-366. [16] WANG Z J. Fundamentals of seismic rock physics. Geophysics, 2001,66(2):398-412. [17] MAVKO G,MUKERJI T,DVORKIN J. The rock physics handbook. Cambridge:Cambridge University Press,1998:260-263. [18] VOIGT W. Textbook of crystal physics. Leipzig:Teubner,1910:100-105. [19] REUSS A. Calculation of the yield point from mixed crystals. Math Mech,1929,9(5):49-58. [20] HILL R. The elastic behavior of crystalline aggregate. Proceedings of the Physical Society,1952,65(5):349-354. [21] HASHIN Z,SHTRIKMAN S. A variational approach to the elastic behavior of multiphase materials. Journal of the Mechanics & Physics of Solids,1963,11(2):127-140. [22] 云美厚,易维启,庄红艳.砂岩的弹性模量与孔隙率、泥质含量、有效压力和温度的经验关系.石油地球物理勘探,2001, 36(3):308-314. YUN M H,YI W Q,ZHUANG H Y. Empirical relationship among elastic modulus,porosity,clay content,effective pressure and temperature in dry core sample of sandstone. Oil Geophysical Prospecting,2001,36(3):308-314. [23] 张金强,曲寿利,孙建国,等.一种碳酸盐岩储层中流体替换的实现方法.石油地球物理勘探,2010,45(3):406-409. ZHANG J Q,QU S L,SUN J G,et al. A fluid substitution realization method in carbonate reservoir. Oil Geophysical Prospecting,2010,45(3):406-409. [24] LIN K,XIONG X J,YANG X,et al. Self-adapting extraction of matrix mineral bulk modulus and verification of fluid substitution. Applied Geophysics,2011,8(2):110-116. [25] 胡晓丽,谭大龙.孔隙形状对AVO响应影响的研究.岩性油气藏,2010,22(3):114-117. HU X L,TAN D L. Influence of pore shape on AVO response. Lithologic Reservoirs,2010,22(3):114-117. [26] 刘航宇,田中元,徐振永.基于分形特征的碳酸盐岩储层孔隙结构定量评价.岩性油气藏,2017,29(5):97-105. LIU H Y,TIAN Z Y,XU Z Y. Quantitative evaluation of carbonate reservoir pore structure based on fractal characteristics. Lithologic Reservoirs,2017,29(5):97-105. [27] 葛小波,李吉君,卢双舫,等. 基于分形理论的致密砂岩储层微观孔隙结构表征——以冀中坳陷致密砂岩储层为例.岩性油气藏,2017,29(5):106-112. GE X B,LI J J,LU S F,et al. Fractal characteristics of tight sandstone reservoir using mercury intrusion capillary pressure:a case of tight sandstone reservoir in Jizhong Depression. Lithologic Reservoirs,2017,29(5):106-112. [28] 闫建平,梁强,耿斌,等.低渗透砂岩微孔特征与孔隙结构类型的关系——以东营凹陷南斜坡沙四段为例.岩性油气藏, 2017,29(3):18-26. YAN J P,LIANG Q,GENG B,et al. Relationship between micropore characteristics and pore structure of Low permeability sandstone:a case of the fourth member of Shahejie Formation in southern slope of Dongying Sag. Lithologic Reservoirs,2017, 29(3):18-26. [29] BERRYMAN J G. Mixture theories for rock properties. Washington,D C:American Geophysical Union,1995:205-228. [30] CHENG C H,TOKSöZ M N. Inversion of seismic velocities for the pore aspect ratio spectrum of a rock. Journal of Geophysical Research,1979,84(B13):7533-7543. [31] KRIEF M,GARAT J,STELLINGWERFF J,et al. A petrophysical interpretation using the velocities of P and S waves(fullwaveform sonic). The Log Analyst,1990,31(6):355-369. [32] 林凯,贺振华,熊晓军,等.基于基质矿物模量自适应提取横波速度反演方法.石油地球物理勘探,2013,48(2):262-267. LIN K,HE Z H,XIONG X J,et al. Inversion of shear wave velocity based on self-adapting extraction of matrix modulus. Oil Geophysical Prospecting,2013,48(2):262-267. [33] SALEH A A,CASTAGNA J P. Revisiting the Wyllie time average equation in the case of near spherical pores. Geophysics,2004, 69(1):45-55. [34] ZHANG J J,BENTLEY L R. Pore geometry and elastic moduli in sandstones. The Crewes Research Report,2003,15(1):1-20. |
[1] | Feng Xiaoying, Qin Fengqi, Tang Yutong, Liu Hui, Wang Ya. AVO response characteristics of coalbed methane stratum in Qinshui Basin [J]. LITHOLOGIC RESERVOIRS, 2015, 27(4): 103-108. |
[2] | HU XiaoLi,TAN Dalong. Influence of pore shape on AVO response [J]. Lithologic Reservoirs, 2010, 22(3): 114-117. |
[3] | WANG Hui, ZHANG Yufen. Model-based multi-par ameter s non-linear inver sion method in pr estack domain [J]. Lithologic Reservoirs, 2008, 20(2): 108-113. |
|