Lithologic Reservoirs ›› 2019, Vol. 31 ›› Issue (2): 56-65.doi: 10.12108/yxyqc.20190207

Previous Articles     Next Articles

Diagenesis and porosity evolution of Permian tight reservoirs in Kangning area,eastern margin of Ordos Basin

HUYAN Yuying1,2, JIANG Fujie2, PANG Xiongqi2, LIU Tieshu3, CHEN Xiaozhi3, LI Longlong2,4, SHAO Xinhe2, ZHENG Dingye2   

  1. 1. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, Hebei, China;
    2. College of Geosciences, China University of Petroleum-Beijing, Beijing 102249, China;
    3. CNOOC Research Institute Co., Ltd., Beijing 100028, China;
    4. Wuxi Research Institute of Petroleum Geology, SINOPEC, Wuxi 214126, Jiangsu, China
  • Received:2018-10-09 Revised:2018-12-04 Online:2019-03-21 Published:2019-03-21

Abstract: Giant natural gas potential exists in Kangning area in the eastern margin of Ordos Basin which is one of the tight sands gas targets in China. To investigate the diagenesis characteristics and genesis of densification, based on the data of thin sections,scanning electron microscope (SEM),X-ray diffraction,particle size analysis, the rock composition,pore type and diagenesis-porosity evolution process of Permian reservoirs were analyzed. The results show that reservoirs are dominated by fine-medium feldspathic lithic sandstone and lithic sandstone. The average content of quartz is 49%. Rock fragment and feldspar content is in average values of 36% and 15% respectively. The reservoirs are typical low porosity and extra-low permeability tight sandstone,with an average porosity of 7% and an average permeability of 0.46 mD. The pore diameter is small with fine throat and poor sorting. Additionally,secondary dissolved pore dominates the main pore system. The Permian sandstone reservoirs have experienced compaction,cementation and dissolution-replacement,which are divided into middle A-B diagenetic stage. Compaction is the key to cause the formation of tight reservoirs,resulting in a porosity loss of 16.39%. Second leading factor is carbonate cementation and clay mineral filling,which reduces porosity by 12.30%,whereas later dissolution increases porosity by 6.01%. The calculated porosity is almost equivalent to the measured average porosity of 7.46%. The above research results have a certain reference value for searching for secondary dissolution sweet spot in exploration of tight gas reservoirs in the study area.

Key words: diagenesis, porosity evolution, tight sandstone, Permian, Kangning area, Ordos Basin

CLC Number: 

  • TE122.2
[1] HOLDITCH S A. Tight gas sands. Journal of Petroleum Technology, 2006, 58(6):86.
[2] 魏新善, 胡爱平, 赵会涛, 等.致密砂岩气地质认识新进展. 岩性油气藏, 2017, 29(1):12. WEI X S, HU A P, ZHAO H T, et al. New geological understanding of tight sandstone gas. Lithologic Reservoirs, 2017, 29(1):12.
[3] 傅宁, 杨树春, 贺清, 等.鄂尔多斯盆地东缘临兴-神府区块致密砂岩气高效成藏条件.石油学报, 2016, 37(增刊1):111. FU N, YANG S C, HE Q, et al. High-efficiency reservoir for-mation conditions of tight sandstone gas in Linxing-Shenfu blocks on the east margin of Ordos Basin. Acta Petrolei Sinica, 2016, 37(Suppl 1):111.
[4] 赵达, 许浩, 汤达祯, 等. 临兴地区下石盒子组致密砂岩储层成岩作用及有利成岩相研究.科技通报, 2016, 32(7):31. ZHAO D, XU H, TANG D Z, et al. Diagenesis and favorable diageneticfacies analysis on the tight sand stone reservoirs of the Lower Shihezi Formation in Linxing area. Bulletin of Science and Technology, 2016, 32(7):31.
[5] ATHY L F. Density, porosity and compaction of sedimentary rocks. AAPG Bulletin, 1930, 14(1):13.
[6] MAXWELL J C. Influence of depth,temperature and geologic age on porosity of quartz sandstone. AAPG Bulletin, 1964, 48(5):707.
[7] SCHERER M. Parameters influencing porosity in sandstones:a model for sandstone porosity prediction. AAPG Bulletin, 1987, 71(5):486.
[8] 王瑞飞, 陈明强. 储层沉积-成岩过程中孔隙度参数演化的定量分析:以鄂尔多斯盆地沿25区块、庄40区块为例. 地质学报, 2007, 81(10):1435. WANG R F, CHEN M Q. Quantitative analysis of porosity evolution during the reservoir sedimentation-diagenesis:Taking the Yan 25 and Zhuang 40 areas in the Ordos Basin as examples. Acta Geologica Sinica, 2007, 81(10):1435.
[9] 郝杰, 周立发, 袁义东, 等. 断陷湖盆致密砂砾岩储层成岩作用及其对孔隙演化的影响. 石油实验地质, 2018, 40(5):635. HAO J, ZHOU L F, YUAN Y D, et al. Diagenetic characteristics and their control on porosity of sandy conglomerate reservoirs in faulted basins. Petroleum Geology & Experiment, 2018, 40(5):635.
[10] 汪洋, 李树同, 牟炜卫, 等. 姬塬西部地区长81致密储层特征及孔隙度演化分析. 岩性油气藏, 2016, 28(4):62-63. WANG Y, LI S T, MOU W W, et al. Tight reservoir characteristics and porosity evolution of Chang 81 in western Jiyuan area. Lithologic Reservoirs, 2016, 28(4):62-63.
[11] ZOU C N, ZHU R K, LIU K Y, et al. Tight gas sandstone reservoirs in China:Characteristics and recognition criteria. Journal of Petroleum Science and Engineering, 2012, 83:82-89.
[12] 冯旭, 刘洛夫, 李朝玮, 等. 碎屑岩孔隙演化定量计算方法的改进和应用. 石油与天然气地质, 2017, 38(6):1199. FENG X, LIU L F, LI C W, et al. Improvement and application of quantitative calculation of porosity evolution of clastic rock. Oil & Gas Geology, 2017, 38(6):1199.
[13] 武文慧. 鄂尔多斯盆地上古生界储层砂岩特征及成岩作用研究. 成都:成都理工大学, 2011. WU W H. Research on the characteristics and diagenesis of sandstone in the Upper Paleozoic reservoir in Ordos Basin. Chengdu:Chengdu University of Technology, 2011.
[14] DOWEY P J, HODGSON D M, WORDEN R H. Pre-requisites, processes, and prediction of chlorite grain coatings in petroleum reservoirs:a review of subsurface example. Marine and Petroleum Geology, 2012, 32(1):73.
[15] 吴陈冰洁, 朱筱敏, 魏巍, 等.查干凹陷下白垩统巴二段储层特征及孔隙演化. 岩性油气藏, 2017, 29(1):75. WU-CHEN B J, ZHU X M, WEI W, et al. Reservoir characteristics and pore evolution of the second member of the Lower Cretaceous Bayingebi Formation in Chagan Depression. Lithologic Reservoirs, 2017, 29(1):75.
[16] 范萌萌, 李文厚, 袁珍. 鄂尔多斯盆地东南部长6成岩作用及其对孔隙的影响. 地质通报, 2016, 35(2/3):449. FAN M M, LI W H, YUAN Z. Diagenesis and its influence on porosity of Chang 6 reservoir in southeast Ordos Basin. Geological Bulletin of China, 2016, 35(2/3):449.
[17] 刘再振, 刘玉明, 李洋冰, 等.鄂尔多斯盆地神府地区太原组致密砂岩储层特征及成岩演化.岩性油气藏, 2017, 29(6):55. LIU Z Z, LIU Y M, LI Y B, et al. Tight sandstone reservoir characteristics and diagenesis evolution of Taiyuan Formation in Shenmu-Fugu area, Ordos Basin. Lithologic Reservoirs, 2017, 29(6):55.
[18] 任战利, 于强, 崔军平, 等. 鄂尔多斯盆地热演化史及其对油气的控制作用.地学前缘, 2017, 24(3):138-139. REN Z L, YU Q, CUI J P, et al. Thermal history and its controls on oil and gas of the Orods Basin. Earth Science Frontiers, 2017, 24(3):138-139.
[19] 赵孟为. 磷灰石裂变径迹分析在恢复盆地沉降抬升史中的应用:以鄂尔多斯盆地为例. 地球物理学报, 1996, 39(增刊1):241-242. ZHAO M W. The application of apatite fission track analysis to the reconstruction of the subsidence and uplift history of sedimentary basins:a case study from the Ordos Basin. Acta Geophysica Sinica, 1996, 39(Suppl 1):241-242.
[20] 于强. 鄂尔多斯盆地中东部地区古生界热演化史与天然气成藏. 西安:西北大学, 2012. YU Q. The Paleozoic thermal evolution history and natural gas accumulation of the central and eastern parts of Ordos Basin. Xi'an:Northwestern University, 2012.
[21] BEARD D C,WEYL P K. Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bulletin, 1973, 57(2):352.
[22] SCLATER J G, CHRISTIE P A F. Continental stretching:an exploration of the post-mid-Cretaceous subsidence of the central North Sea Basin. Journal of Geophysical Research, 1980, 85(B7):3732.
[1] YAN Xueying, SANG Qin, JIANG Yuqiang, FANG Rui, ZHOU Yadong, LIU Xue, LI Shun, YUAN Yongliang. Main controlling factors for the high yield of tight oil in the Jurassic Da’anzhai Section in the western area of Gongshanmiao, Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(6): 98-109.
[2] Guan Yunwen, Su Siyu, Pu Renhai, Wang Qichao, Yan Sujie, Zhang Zhongpei, Chen Shuo, Liang Dongge. Palaeozoic gas reservoir-forming conditions and main controlling factors in Xunyi area,southern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(6): 77-88.
[3] BAI Yubin, LI Mengyao, ZHU Tao, ZHAO Jingzhou, REN Haijiao, WU Weitao, WU Heyuan. Geochemical characteristics of source rocks and evaluation of shale oil “sweet spot”of Permian Fengcheng Formation in Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 110-121.
[4] WANG Yifeng, TIAN Jixian, LI Jian, QIAO Tong, LIU Chenglin, ZHANG Jingkun, SHA Wei, SHEN Xiaoshuang. Geochemical characteristics of Permian condensate oil and gas and phase types in southwest of Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 149-159.
[5] YANG Haibo, FENG Dehao, YANG Xiaoyi, GUO Wenjian, HAN Yang, SU Jiajia, YANG Huang, LIU Chenglin. Characteristics of source rocks and thermal evolution simulation of Permian Pingdiquan Formation in Dongdaohaizi Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(5): 156-166.
[6] ZHANG Xiaoli, WANG Xiaojuan, ZHANG Hang, CHEN Qin, GUAN Xu, ZHAO Zhengwang, WANG Changyong, TAN Yaojie. Reservoir characteristics and main controlling factors of Jurassic Shaximiao Formation in Wubaochang area,northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 87-98.
[7] CHEN Kang, DAI Juncheng, WEI Wei, LIU Weifang, YAN Yuanyuan, XI Cheng, LYU Yan, YANG Guangguang. Lithofacies classification of tight sandstone based on Bayesian Facies-AVO attributes:A case study of the first member of Jurassic Shaximiao Formation in central Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 111-121.
[8] WANG Zixin, LIU Guangdi, YUAN Guangjie, YANG Henglin, FU Li, WANG Yuan, CHEN Gang, ZHANG Heng. Characteristics and reservoir control of source rocks of Triassic Chang 7 member in Qingcheng area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(5): 133-144.
[9] YIN Hu, QU Hongjun, SUN Xiaohan, YANG Bo, ZHANG Leigang, ZHU Rongxing. Characteristics of deep-water deposits and evolution law of Triassic Chang 7 reservoir in southeastern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(5): 145-155.
[10] XU Tianlu, WU Chengmei, ZHANG Jinfeng, CAO Aiqiong, ZHANG Teng. Natural fracture characteristics and fracture network simulation in shale reservoirs of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2024, 36(4): 35-43.
[11] MOU Feisheng, YIN Xiangdong, HU Cong, ZHANG Haifeng, CHEN Shijia, DAI Linfeng, LU Yifan. Distribution characteristics and controlling factors of tight oil of Triassic Chang 7 member in northern Shaanxi area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(4): 71-84.
[12] BAO Hanyong, ZHAO Shuai, ZHANG Li, LIU Haotian. Exploration achievements and prospects for shale gas of Middle-Upper Permian in Hongxing area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 12-24.
[13] SHEN Youyi, WANG Kaifeng, TANG Shuheng, ZHANG Songhang, XI Zhaodong, YANG Xiaodong. Geological modeling and“sweet spot”prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block,Qinshui Basin [J]. Lithologic Reservoirs, 2024, 36(4): 98-108.
[14] CAO Jiangjun, WANG Xi, WANG Liuwei, LI Cheng, SHI Jian, CHEN Zhaobing. Characteristics and main controlling factors of interbedded shale oil reservoirs of Triassic Chang 7 member in Heshui area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(3): 158-171.
[15] SHAO Wei, ZHOU Daorong, LI Jianqing, ZHANG Chengcheng, LIU Tao. Key factors and favorable exploration directions for oil and gas enrichment in back margin sag of thrust nappe in Lower Yangtze [J]. Lithologic Reservoirs, 2024, 36(3): 61-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: