Lithologic Reservoirs ›› 2020, Vol. 32 ›› Issue (2): 115-121.doi: 10.12108/yxyqc.20200212
Previous Articles Next Articles
HE Jian1,2, WU Gang3, NIE Wenliang1,2, LIU Songming1,2, HUANG Wei1,2
CLC Number:
[1] 吕文雅, 曾联波, 刘静, 等.致密低渗透储层裂缝研究进展. 地质科技情报, 2016, 35(4):74-83. LYU W Y, ZENG L B, LIU J, et al. Research progress on cracks in dense low permeability reservoirs. Geological Science Technology Information, 2016, 35(4):74-83. [2] 史洪亮, 杨克明, 王同.川西坳陷须五段致密砂岩与泥页岩储层特征及控制因素.岩性油气藏, 2017, 29(4):38-46. SHI H L, YANG K M, WANG T. Characteristics and controlling factors of tight sandstone and shale reservoirs of the fifth member of Xujiahe Formation in the Western Sichuan Depression. Lithologic Reservoirs, 2017, 29(4):38-46. [3] 李翔, 王建功, 张平, 等.柴达木盆地英西地区E32裂缝成因与油气地质意义.岩性油气藏, 2018, 30(6):45-54. LI X, WANG J G, ZHANG P, et al. Fracture genesis mechanism and geological significance of E32 in Yingxi area,Qaidam Basin. Lithologic Reservoirs, 2018, 30(6):45-54. [4] 张广智, 郑静静, 印兴耀.基于Curvelet变换的多尺度性识别裂缝发育带.石油地球物理勘探, 2011, 46(5):757-762. ZHANG G Z, ZHENG J J, YIN X Y. Identification technology of fracture zone and its strike based on the Curvelet transform. Oil Geophysical Prospecting, 2011, 46(5):757-762. [5] 王蓓, 刘向君, 司马立强, 等.磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用.岩性油气藏, 2019, 31(2):124-133. WANG B, LIU X J, SIMA L Q, et al. Multi-scale discrete fracture modeling technology for carbonate reservoir of Longwangmiao Formation in Moxi area and its application. Lithologic Reservoirs, 2019, 31(2):124-133. [6] 刘冬冬, 杨东旭, 张子亚, 等.基于常规测井和成像测井的致密储层裂缝识别方法:以准噶尔盆地吉木萨尔凹陷芦草沟组为例. 岩性油气藏, 2019, 31(3):76-85. LIU D D, YANG D X, ZHANG Z Y, et al. Fracture identification for tight reservoirs by conventional and imaging logging:a case study of Permian Lucaogou Formation in Jimsar Sag,Junggar Basin. Lithologic Reservoirs, 2019, 31(3):76-85. [7] 贺振华, 黄德济, 文晓涛.裂缝油气藏地球物理预测.成都:四川科学技术出版社, 2007:5-15. HE Z H, HUANG D J, WEN X T. Geophysical prediction of fractured reservoirs. Chengdu:Sichuan Science and Technology Press, 2007:5-15. [8] XU J Y, WANG W X, YE L N. Rock fracture edge detection based on quaternion convolution by scale multiplication. Optical Engineering, 2009, 48(9):1-7. [9] 刘松鸣, 武刚, 文晓涛, 等.曲率方位加强技术在识别低序级断层中的应用. 断块油气田, 2019, 26(1):37-41. LIU S M, WU G, WEN X T, et al. Application of curvature azimuth strengthening technology to low-level fault identification. Fault-Block Oil and Gas Field, 2019, 26(1):37-41. [10] LI H, DOU Z, WANG S X, et al. Seismic multi-attributes recognition for carbonate fractured-vuggy reservoirs with "weak reflection" characteristics. Geophysical Prospecting for Petroleum, 2014, 53(6):713-719. [11] ZHANG G, LI N, GUO H W, et al. Fracture identification based on remote detection acoustic reflection logging. Applied Geophysics, 2015, 12(4):473-481. [12] 章惠, 关达, 向雪梅, 等.川东北元坝东部须四段裂缝型致密砂岩储层预测.岩性油气藏, 2018, 30(1):133-139. ZHANG H, GUAN D, XIANG X M,et al. Prediction for fractured tight sandstone reservoir of Xu 4 member in eastern Yuanba area, northeastern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):133-139. [13] CHUNG K C, TAN S S, HOLDSWORTH D K. Insolvency prediction model using multivariate discriminant analysis and artificial neural network for the finance industry in New Zealand. Social Science Electronic Publishing, 2008, 3(1):19-29. [14] CHEN K C, YU-CHIAN C. Stroke prevention by traditional Chinese medicine? A genetic algorithm,support vector machine and molecular dynamics approach. Soft Matter, 2011, 7(8):4001-4008. [15] MANUPATI V K, ANAND R, THAKKAR J J, et al. Adaptive production control system for a flexible manufacturing cell using support vector machine-based approach. International Journal of Advanced Manufacturing Technology, 2012, 67(1/4):969-981. [16] 申辉林, 高松洋.基于BP神经网络进行裂缝识别研究.断块油气田, 2007, 14(2):60-62. SHEN H L, GAO S Y. Research on fracture identification based on BP neural network. Fault-Block Oil and Gas Field, 2007, 14(2):60-62. [17] 石广仁.支持向量机在裂缝预测及含气性评价应用中的优越性. 石油勘探与开发, 2008, 35(5):588-594. SHI G R. Superiorities of support vector machine in fracture prediction and gassiness evaluation. Petroleum Exploration and Development, 2008, 35(5):588-594. [18] ZHANG F M, CAO Q K, WANG Q Y. A comparative inquiry into supply chain performance appraisal based on support vector machine and neural network. IEEE 2008 International Conference on Management Science and Engineering(ICMSE), Long Beach, 2008. [19] ZHAO T, JAVARAM V, MARFURT K J, et al. Lithofacies classification in Barnett Shale using proximal support vector machines. SEG Annual Meeting, Denver, 2014. [20] ZHANG B, ZHAO T, JIN X C, et al. Brittleness evaluation of resource plays by integrating petrophysical and seismic data analysis. Interpretation, 2015, 3(2):T081-T092. [21] 刘佳乐, 文晓涛, 张瑞, 等.基于近似支持向量机的流体识别方法.辽宁化工, 2016, 45(4):449-453. LIU J L, WEN X T, ZHANG R, et al. A Fluid identification method based on proximal support vector machine. Liaoning Chemical Industry, 2016, 45(4):449-453. [22] 李文秀, 文晓涛, 李天, 等. 近似支持向量机的AVO类型判别.石油地球物理勘探, 2018, 53(5):969-974. LI W X, WEN X T, LI T, et al. AVO types discrimination based on a proximal support vector machine. Oil Geophysical Prospecting, 2018, 53(5):969-974. [23] TONG S, KOLLER D. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2002, 2(1):999-1006. [24] TSOCHANTARIDIS I, HOFMANN T, JOACHIMS T, et al. Support vector machine learning for interdependent and structured output spaces. The 21 st ACM International Conference, Alberta, Canada, 2004. [25] VAPNIK V N. 统计学习理论的本质. 张学工, 译. 北京:清华大学出版社, 2000:7-35. VAPNIK V N. The essence of statistical learning theory. ZHANG X G, trans. Beijing:Tsinghua University Press, 2000:7-35. [26] FUNG G, MANGASARIAN O L. Proximal support vector machine classifiers. The Seventh ACM SIGKDD International Conference, San Francisco, 2001. [27] HSU C W, LIN C J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 2002, 13(2):415-425. [28] FUNG G M, MANGASARIAN O L. Multi-category proximal support vector machine classifiers. Machine Learning, 2005, 59(1/2):77-97. |
[1] | XU Zhongbo, WANG Libing, SHEN Chunsheng, CHEN Mingyang, GAN Liqin. Architecture characterization of meandering river reservoirs of lower Ming huazhen Formation of Neogene in Penglai 19-3 oilfield,Bohai Sea [J]. Lithologic Reservoirs, 2023, 35(5): 100-107. |
[2] | HUANG Yanqing, LIU Zhongqun, WANG Ai, XIAO Kaihua, LIN Tian, JIN Wujun. Types and distribution of tight sandstone gas sweet spots of the third member of Upper Triassic Xujiahe Formation in Yuanba area, Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(2): 21-30. |
[3] | WANG Lifeng, SONG Ruiyou, CHEN Dianyuan, XU Tao, PAN Guangchao, HAN Guangming. Seismic identification and gas-bearing prediction of large-scale submarine fans of Neogene Huangliu Formation in D13 area of Yinggehai Basin [J]. Lithologic Reservoirs, 2022, 34(4): 42-52. |
[4] | YAO Jun, LE Xingfu, CHEN Juan, SU Wang, ZHANG Yongfeng. Prediction of high-quality source rock distribution based on pseudo-3D multi-attribute inversion [J]. Lithologic Reservoirs, 2021, 33(1): 248-257. |
[5] | Wang Junrui,Liang Liwen 2,Deng Qiang 2,Tian panpan 2,Tan Weixiong 2. Research and application of log reconstruction based on multiple regression model [J]. Lithologic Reservoirs, 2016, 28(3): 113-120. |
[6] | WANG Ligong, BI Jianjun, WANG Zhenhui, WANG Xuexi, GAO Xingxing, WANG Yafei. Seismic plane sedimentary facies interpretation method and its application [J]. Lithologic Reservoirs, 2011, 23(6): 84-88. |
[7] | HOU Bin, GUIZhixian, XU Huiqun, HEJiacheng. Application of multi-attribute and neural network method to hydrocarbon reservoir prediction [J]. Lithologic Reservoirs, 2010, 22(3): 118-120. |
|