Lithologic Reservoirs ›› 2021, Vol. 33 ›› Issue (3): 162-168.doi: 10.12108/yxyqc.20210317

• OIL AND GAS FIELD DEVELOPMENT • Previous Articles     Next Articles

Fractal model of effective gas diffusion coefficient based on permeability correction factor

WANG Changjin, ZHANG Sai, XU Jinglei   

  1. Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • Received:2020-06-10 Revised:2020-09-30 Published:2021-06-03

Abstract: The phenomenon of gas diffusion in porous media is widespread in the fields of energy and environment,oil and gas reservoir engineering. The internal structure of real porous media is irregular and complex,and shows fractal characteristics within a certain scale. In order to explore the law of gas diffusion in porous media with fractal characteristics,the permeability correction factor and Fick's law were introduced to establish the functional relationships of effective gas diffusion coefficient with porous media structure parameters and gas parameters. The results show that the effective gas diffusion coefficient is proportional to the area fractal dimension of porous media,porosity,and maximum pore diameter,and inversely proportional to tortuous fractal dimension, gas molar mass and gas density. By comparing the effective gas diffusion coefficient predicted by fractal model with the experimental data,it can be found that the model based on permeability correction factor is more consistent with the experimental data. The new fractal model of gas diffusion coefficient can correctly describe the law of gas diffusion in porous media, which has reference significance for the development of oil and gas fields.

Key words: gas diffusion, permeability correction factor, fractal model, Fick's law

CLC Number: 

  • TE311
[1] 郑仟.分形多孔介质中气体流动与扩散的输运特性研究.武汉:华中科技大学物理系, 2012. ZHENG Q. Study of some transport properties for gas flow and diffusion through fractal porous media. Wuhan:Huazhong University of Science and Technology, 2012.
[2] CAO L Y, HE R. Gas diffusion in fractal porous media. Combustion Science and Technology, 2010, 182(7):822-841.
[3] 王晓琦, 翟增强, 金旭, 等.页岩气及其吸附与扩散的研究进展.化工学报, 2015, 66(8):2838-2845. WANG X Q, ZHAI Z Q, JIN X, et al. Progress in adsorption and diffusion of shale gas. CIESC Journal, 2015, 66(8):2838-2845.
[4] BESKOK A, KARNIADAKIS G E. A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophysical Engineering, 1999, 3(1):43-77.
[5] 符东宇, 李勇明, 赵金洲, 等.基于REV尺度格子Boltzmann方法的页岩气藏渗流规律.岩性油气藏, 2020, 32(5):151-160. FU D Y, LI Y M, ZHAO J Z, et al. Gas seepage flow law of shale gas reservoirs based on REV-scale lattice Boltzmann method. Lithologic Reservoirs, 2020, 32(5):151-160.
[6] ROY S, RAJU R. Modeling gas flow through microchannels and nanopores. Journal of Applied Physics, 2003, 93(8):4870-4879.
[7] 张烈辉, 单保超, 赵玉龙, 等.页岩气藏表观渗透率和综合渗流模型建立.岩性油气藏, 2017, 29(6):108-118. ZHANG L H, SHAN B C, ZHAO Y L, et al. Establishment of apparent permeability model and seepage flow model for shale reservoir. Lithologic Reservoirs, 2017, 29(6):108-118.
[8] 李亚雄, 刘先贵, 胡志明, 等.页岩气滑脱、扩散传输机理耦合新方法.物理学报, 2017, 66(11):230-240. LI Y X, LIU X G, HU Z M, et al. A new method for the transport mechanism coupling of shale gas slippage and diffusion. Acta Physica Sinica, 2017, 66(11):230-240.
[9] 陈居凯, 朱炎铭, 崔兆帮, 等.川南龙马溪组页岩孔隙结构综合表征及其分形特征.岩性油气藏, 2018, 30(1):55-62. CHEN J K, ZHU Y M, CUI Z B, et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):55-62.
[10] 朱汉卿, 贾爱林, 位云生, 等.基于氩气吸附的页岩纳米级孔隙结构特征.岩性油气藏, 2018, 30(2):77-84. ZHU H Q, JIA A L, WEI Y S, et al. Nanopore structure characteristics of shale based on Ar adsorption. Lithologic Reservoirs, 2018, 30(2):77-84.
[11] 邓浩阳, 司马立强, 吴玟, 等.致密砂岩储层孔隙结构分形研究与渗透率计算:以川西坳陷蓬莱镇组、沙溪庙组储层为例. 岩性油气藏, 2018, 30(6):76-82. DENG H Y, SIMA L Q, WU W, et al. Fractal characteristics of pore structure and permeability calculation for tight sandstone reservoirs:A case of Penglaizhen Formation and Shaximiao Formation in western Sichuan Depression. Lithologic Reservoirs, 2018, 30(6):76-82.
[12] 姜瑞忠, 张春光, 郜益华, 等.缝洞型碳酸盐岩油藏水平井分形非线性渗流.岩性油气藏, 2019, 31(6):118-126. JIANG R Z, ZHANG C G, GAO Y H, et al. Fractal nonlinear seepage model of horizontal wells in fractured-vuggy carbonate reservoirs. Lithologic Reservoirs, 2019, 31(6):118-126.
[13] 李玉丹, 董平川, 张荷, 等.基于分形理论的页岩基质表观渗透率研究.油气地质与采收率, 2017,24(1):92-99. LI Y D, DONG P C, ZHANG H, et al. Analysis on apparent permeability of shale matrix based on fractal theory. Petroleum Geology and Recovery Efficiency, 2017, 24(1):92-99.
[14] 王世芳, 吴涛, 曹秀英.分形多孔材料的一种改进化气体扩散分形模型.化学工程, 2018, 46(2):14-17. WANG S F, WU T, CAO X Y. An improved gas diffusivity fractal model for fractal porous materials. Chemical Engineering(China), 2018, 46(2):14-17.
[15] ZHENG Q, YU B M, WANG S F, et al. A diffusivity model for gas diffusion through fractal porous media. Chemical Engineering Science, 2012, 68(1):650-655.
[16] SHI Y, XIAO J S, QUAN S H, et al. Fractal model for prediction of effective hydrogen diffusivity of gas diffusion layer in proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2009, 35(7):2863-2867.
[17] ZHANG L Z. A fractal model for gas permeation through porous membranes. International Journal of Heat and Mass Transfer, 2008, 51(21):5288-5295.
[18] WOIGNIER T, ANEZ L, CALAS-ETIENNE S, et al. Gas slippage in fractal porous material. Journal of Natural Gas Science and Engineering, 2018, 57:11-20.
[19] 张赛, 陈君若, 刘显茜.气体有效扩散系数的分形模型.化学工程, 2013, 41(5):39-43. ZHANG S, CHEN J R, LIU X X. Fractal model of gas effective diffusivity. Chemical Engineering(China), 2013, 41(5):39-43.
[20] 牟新竹, 陈振乾.多尺度分形多孔介质气体有效扩散系数的数学模型. 东南大学学报(自然科学版), 2019, 49(3):520-526. MOU X Z, CHEN Z Q. Mathematical model for effective gas diffusion coefficient in multi-scale fractal porous media. Journal of Southeast University(Natural Science Edition), 2019, 49(3):520-526.
[21] 郁伯铭, 徐鹏, 邹明清, 等.分形多孔介质输运物理.北京:科学出版社, 2014:5-33. YU B M, XU P, ZOU M Q, et al. Transport physics in fractal porous media. Beijing:Science Press, 2014:5-33.
[22] 朱维耀, 马千, 邓佳, 等.纳微米级孔隙气体流动数学模型及应用.北京科技大学学报,2014, 36(6):709-715. ZHU W Y, MA Q, DENG J, et al. Mathematical model and application of gas flow in nano-micron pores. Journal of University of Science and Technology Beijing, 2014, 36(6):709-715.
[23] 刘圣鑫, 钟建华, 刘晓光, 等.致密多孔介质气体运移机理.天然气地球科学, 2014, 25(10):1520-1528. LIU S X, ZHONG J H, LIU X G, et al. Gas transport mechanism in tight porous media. Natural Gas Geoscience, 2014, 25(10):1520-1528.
[24] FENG Y J, YU B M, ZOU M Q, et al. A generalized model for the effective thermal conductivity of porous media based on selfsimilarity. Journal of Physics D:Applied Physics, 2004, 37:3030-3040.
[25] 尹帅, 谢润成, 丁文龙, 等.常规及非常规储层岩石分形特征对渗透率的影响.岩性油气藏, 2017, 29(4):81-90. YIN S, XIE R C, DING W L, et al. Influences of fractal characteristics of reservoir rocks on permeability. Lithologic Reservoirs, 2017, 29(4):81-90.
[26] CURRIE J A. Gaseous diffusion in porous media. Part 2:Dry granular materials. British Journal of Applied Physics, 1960, 11(8):318-324.
[1] SHEN Rui, HU Zhiming, GUO Hekun, JIANG Baicai, MIAO Sheng, LI Wuguang. Storage space and gas content law of Longmaxi shale in Changning area,Sichuan Basin [J]. Lithologic Reservoirs, 2018, 30(5): 11-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Xiongqi,CHEN Dongxia, ZHANG Jun. Concept and categorize of subtle reservoir and problems in its application[J]. Lithologic Reservoirs, 2007, 19(1): 1 -8 .
[2] LEI Bianjun, ZHANG Ji,WANG Caili,WANG Xiaorong, LI Shilin, LIU Bin. Control of high r esolution sequence str atigr aphy on microfacies and reservoir s: A case from the upper Ma 5 member in Tong 5 wellblock, Jingbian Gas Field[J]. Lithologic Reservoirs, 2008, 20(1): 1 -7 .
[3] YANG Jie,WEI Pingsheng, LI Xiangbo. Basic concept, content and research method of petroleum seismogeology[J]. Lithologic Reservoirs, 2010, 22(1): 1 -6 .
[4] WANG Yan-qi1,HU Min-yi1,LIU Fu-yan1,WANG Hui1,HU Zhi-hua1,2. [J]. LITHOLOGIC RESERVOIRS, 2008, 20(3): 44 -48 .
[5] DAI Liming, LI Jianping, ZHOU Xinhuai, CUI Zhongguo, CHENG Jianchun. Depositional system of the Neogene shallow water delta in Bohai Sea area[J]. Lithologic Reservoirs, 2007, 19(4): 75 -81 .
[6] DUAN Youxiang, CAO Jing, SUN Qifeng. Application of auto-adaptive dip-steering technique to fault recognition[J]. Lithologic Reservoirs, 2017, 29(4): 101 -107 .
[7] HUANG Long, TIAN Jingchun, XIAO Ling, WANG Feng. Characteristics and evaluation of Chang 6 sandstone reservoir of Upper Triassic in Fuxian area, Ordos Basin[J]. Lithologic Reservoirs, 2008, 20(1): 83 -88 .
[8] YANG Shiwei, LI Jianming. Characteristics and geological significance of seismites[J]. Lithologic Reservoirs, 2008, 20(1): 89 -94 .
[9] LI Chuanliang, TU Xingwan. Two types of stress sensitivity mechanisms for reservoir rocks:Being favorable for oil recovery[J]. Lithologic Reservoirs, 2008, 20(1): 111 -113 .
[10] LI Jun, HUANG Zhilong, LI Jia, LIU Bo. The pool-forming pattern in the condition of arching in the southeast uplift in Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(1): 57 -61 .
TRENDMD: