Lithologic Reservoirs ›› 2024, Vol. 36 ›› Issue (3): 40-49.doi: 10.12108/yxyqc.20240304

• PETROLEUM EXPLORATION • Previous Articles    

Application of improved U-Net network small faults identification technology to Triassic Baijiantan Formation in Mazhong area,Mahu Sag

SONG Zhihua1,2, LI Lei2, LEI Dewen1, ZHANG Xin1, LING Xun1   

  1. 1. Exploration Division, PertoChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
    2. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
  • Received:2023-01-13 Revised:2023-03-17 Published:2024-04-30

Abstract: The small faults of Triassic Baijiantan Formation in Mazhong area of Mahu Sag in Junggar Basin were identified by using the improved U-Net network small fault identification technology. The results show that: (1)Construct-guided filtering preprocessing can effectively improve the quality of seismic data and increase the accuracy of fault identification. The U-Net network, which incorporatesskip connections, relay supervision, normal standardization, and focused mean square loss function, has improved its fine identification ability of small faults(. 2)Using 200 training sample sets and 20 validation sample sets, the seismic data of the model were generated by convolution of reflection coefficients and Ricker wavelet, and faults were manually labeled. Optimal network model parameters were selected to test on the synthesized noisy seismic data by using coherent attributes, conventional U-Net network methods, and the improved U-Net network method. Construct-guided filtering effectively highlighted the boundaries of faults and enhanced the lateral continuity of the same phase axis. The improved U-Net network method can effectively identify faults with a fault distance of more than 7 meters.(3)The improved U-Net network method has significantly higher accuracy than coherent attributes and conventional UNet network methods in identifying high-angle strike-slip faults and associated secondary faults with small fault throw of Triassic Baijiantan Formation in Mazhong area of Mahu Sag. The No. 3 and No. 4 sand bodies in the northern Dazhuluogou fault in the study area are favorable areas for efficient exploration of Triassic Baijiantan Formation in MZ4 well area.

Key words: U-Net network, fault identification, high-angle strike-slip fault, associated secondary faults with small fault throw, normal standardization, focused mean square loss function, Baijiantan Formation, Triassic, Mahu Sag

CLC Number: 

  • TE319
[1] 陈永波,程晓敢,张寒,等. 玛湖凹陷斜坡区中浅层断裂特征及其控藏作用[J]. 石油勘探与开发,2018,45(6):985-994. CHEN Yongbo,CHENG Xiaogan,ZHANG Han,et al. Fault characteristics and control on hydrocarbon accumulation of middle-shallow layers in the slope zone of Mahu sag,Junggar Basin,NW China[J]. Petroleum Exploration and Development,2018,45(6):985-994.
[2] GERSZTENKORN A,Marfurt K J. Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping[J]. Geophysics,1999,64(5):1468-1479.
[3] 姜良国,刘书会,杨培杰. 振幅曲率属性在浅层河道砂体描述中的应用[J]. 工程地球物理学报,2018,15(1):73-78. JIANG Liangguo,LIU Shuhui,YANG Peijie. The application of amplitude curvature attributes to description of shallow river channel sand bodies[J]. Chinese Journal of Engineering Geophysics,2018,15(1):73-78.
[4] 尹成,彭浩,赵虎,等. 薄砂体重叠带与小断层的地震多属性联合识别方法研究[J].石油物探,2022,61(4):625-634. YIN Cheng,PENG Hao,ZHAO Hu,et al. Identifying small fault and overlap strip of thin sand body based on seismic multiattribute analysis[J]. Geophysical Prospecting for Petroleum, 2022,61(4):625-634.
[5] 张璐,何峰,陈晓智,等. 基于倾角导向滤波控制的似然属性方法在断裂识别中的定量表征[J]. 岩性油气藏,2020,32(2):108-114. ZHANG Lu,HE Feng,CHEN Xiaozhi,et al. Quantitative characterization of fault identification using likelihood attribute based on dip-steering filter control[J]. Lithologic Reservoirs, 2020,32(2):108-114.
[6] 王建君,李井亮,李林,等. 基于叠后地震数据的裂缝预测与建模:以太阳-大寨地区浅层页岩气储层为例[J]. 岩性油气藏,2020,32(5):122-132. WANG Jianjun,LI Jingliang,LI Lin,et al. Fracture prediction and modeling based on poststack 3D seismic data:A case study of shallow shale gas reservoir in Taiyang-Dazhai area[J]. Lithologic Reservoirs,2020,32(5):122-132.
[7] 李婷婷,侯思宇,马世忠,等. 断层识别方法综述及研究进展[J]. 地球物理学进展,2018,33(4):1507-1514. LI Tingting,HOU Siyu,MA Shizhong,et al. Overview and research progress of fault identification method[J]. Progress in Geophysics,2018,33(4):1507-1514.
[8] 王俊,曹俊兴,尤加春,等. 基于门控循环单元神经网络的储层孔渗饱参数预测[J].石油物探,2020,59(4):616-627. WANG Jun,CAO Junxing,YOU Jiachun,et al. Prediction of reservoir porosity,permeability and saturation parameters based on a gated recurrent unit neural network[J]. Geophysical Prospecting for Petroleum,2020,59(4):616-627.
[9] 余里辉. 基于卷积神经网络的断层曲面提取与重建[D]. 成都:电子科技大学,2018. YU Lihui. Extraction and reconstruction of fault surface based on convolutional neural network[D]. Chengdu:University of Electronic Science and Technology of China,2018.
[10] 段艳廷,郑晓东,胡莲莲,等. 基于3D半密度卷积神经网络的断裂检测[J].地球物理学进展,2019,34(6):2256-2261. DUAN Yanting,ZHENG Xiaodong,HU Lianlian,et al. Fault detection based on 3D semi-dense convolutional neural network[J]. Progress in Geophysics,2019,34(6):2256-2261.
[11] WU Xinming,LIANG Luming,SHI Yunzhi,et al. FaultSegD:Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation[J]. Geophysics,2019,84(3):35-45.
[12] WU Xinming,LIANG Luming,SHI Yunzhi,et al. Multitask learning for local seismic image processing:Fault detection, structure-oriented smoothing with edge-preserving,and seismic normal estimation by using a single convolutional neural network[J]. Geophysical Journal International,2019,219(3):2097-2109.
[13] 陈芊澍,文晓涛,何健,等. 基于极限学习机的裂缝带预测[J]. 石油物探,2021,60(1):149-174. CHEN Qianshu,WEN Xiaotao,HE Jian,et al. Prediction of a fracture zone using an extreme learning machine[J].Geophysical Prospecting for Petroleum,2021,60(1):149-174.
[14] 白雨,汪飞,牛志杰,等. 准噶尔盆地玛湖凹陷二叠系风城组烃源岩生烃动力学特征[J]. 岩性油气藏,2022,34(4):116-127. BAI Yu,WANG Fei,NIU Zhijie,et al. Hydrocarbon generation kinetics of source rocks of Permian Fengcheng Formation in Mahu Sag,Junggar Basin[J]. Lithologic Reservoirs,2022,34(4):116-127.
[15] 陈静,陈军,李卉,等. 准噶尔盆地玛中地区二叠系-三叠系叠合成藏特征及主控因素[J]. 岩性油气藏,2021,33(1):71-80. CHEN Jing,CHEN Jun,LI Hui,et al. Characteristics and main controlling factors of Permian-Triassic superimposed reservoirs in central Mahu Sag,Junggar Basin[J]. Lithologic Reservoirs, 2021,33(1):71-80.
[16] 文晓涛,贺锡雷,黄德济,等. 提高地震剖面横向分辨率与压制噪音的试验研究[J]. 物探化探计算技术,2003,25(1):22-25. WEN Xiaotao,HE Xilei,HUANG Deji,et al. Trial on improving horizontal resolution and attenuating noise in seismic section[J].Computing Technique for Geophysical and Geochemical Exploration,2003,25(1):22-25.
[17] 陈常乐. 地震波场构造导向滤波关键技术及应用[D]. 长春:吉林大学,2015. CHEN Changle. Key technology and application of structureoriented filter for seismic wave field[D]. Changchun:Jilin University,2015.
[18] 蔡魁杰. 地震数据处理中局部倾角的估计与应用[D]. 哈尔滨:哈尔滨工业大学,2019. CAI Kuijie. Estimation and applications of local dips in seismic data processing[D]. Harbin:Harbin Institute of Technology,2019.
[19] 崔正伟,程冰洁,徐天吉,等. 基于构造导向滤波与梯度结构张量相干属性的储层裂缝预测方法及应用[J]. 石油地球物理勘探,2021,56(3):555-563. CUI Zhengwei,CHENG Bingjie,XU Tianji,et al. Reservoir fracture prediction method and application based on structureoriented filtering and coherent attributes of gradient structure tensor[J]. Oil Geophysical Prospecting,2021,56(3):555-563.
[20] 石战战,贺振华,文晓涛,等. 基于复数域非线性各向异性扩散滤波的裂缝检测方法[J]. 石油地球物理勘探,2012,47(2):286-290. SHI Zhanzhan,HE Zhenhua,WEN Xiaotao,et al. A fractural detection method based on nonlinear complex anisotropic diffusion filtering[J]. Oil Geophysical Prospecting,2012,47(2):286-290.
[21] 刘璞. 结构导向滤波研究与运用[D]. 成都:成都理工大学, 2014. LIU Pu. Research and application of stucture-oriented filtering[D]. Chengdu:Chengdu University of Technology,2014.
[22] 黄伟. 基于拓频的多阶复数域各向异性扩散滤波[D]. 成都:成都理工大学,2020. HUANG Wei. Multi-level complex-domain anisotropic diffusion filtering based on frequency expanding[D]. Chengdu:Chengdu University of Technology,2020.
[23] WANG Kexian,ZHENG Shunyi,LI Rui,et al. A deep doublechannel dense network for hyperspectral image classification[J]. Journal of Geodesy and Geoinformation Science,2021,4(4):46-62.
[24] 韩卫雪,周亚同,池越. 基于深度学习卷积神经网络的地震数据随机噪声去除[J]. 石油物探,2018,57(6):862-877. HAN Weixue,ZHOU Yatong,CHI Yue. Deep learning convolutional neural networks for random noise attenuation in seismic data[J]. Geophysical Prospecting for Petroleum,2018,57(6):862-877.
[25] 刘建伟,赵会丹,罗雄麟,等. 深度学习批归一化及其相关算法研究进展[J]. 自动化学报,2020,46(6):1090-1120. LIU Jianwei,ZHAO Huidan,LUO Xionglin,et al. Research progress on batch normalization of deep learning and its related algorithms[J].Acta Automatica Sinica,2020,46(6):1090-1120.
[26] 王锦涛,文晓涛,何易龙,等. 基于CNN-GRU神经网络的测井曲线预测方法[J]. 石油物探,2022,61(2):276-285. WANG Jintao,WEN Xiaotao,HE Yilong,et al. Logging curve prediction based on CNN-GRU neural network[J]. Geophysical Prospecting for Petroleum,2022,61(2):276-285.
[27] 徐锐,冯瑞. 卷积神经网络的聚焦均方损失函数设计[J]. 计算机系统应用,2020,29(10):133-140. XU Rui,FENG Rui. Focused mean square loss function design in convolutional neural network[J]. Computer System & Application,2020,29(10):133-140.
[28] 余兴,尤新才,白雨,等. 玛湖凹陷南斜坡断裂识别及其对油气成藏的控制作用[J]. 岩性油气藏,2021,33(1):81-89. YU Xing,YOU Xincai,BAI Yu,et al. Identification of faults in the south slope of Mahu Sag and its control on hydrocarbon accumulation[J]. Lithologic Reservoirs,2021,33(1):81-89.
[1] BO Shangshang, TIAN Jixian, LI Yaoliang, WANG Yetong, WANG Hao, SUN Guoqiang. Provenance analysis of Upper Triassic Xujiahe Formation in northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(2): 99-112.
[2] WANG Tianhai, XU Duonian, WU Tao, GUAN Xin, XIE Zaibo, TAO Huifei. Sedimentary facies distribution characteristics and sedimentary model of Triassic Baikouquan Formation in Shawan Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(1): 98-110.
[3] YIN Lu, XU Duonian, YUE Xingfu, QI Wen, ZHANG Jijuan. Reservoir characteristics and hydrocarbon accumulation rules of Triassic Baikouquan Formation in Mahu Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(1): 59-68.
[4] LONG Shengfang, HOU Yunchao, YANG Chao, GUO Yixuan, ZHANG Jie, ZENG Yali, GAO Nan, LI Shanghong. Sequence stratigraphy and evolution of Triassic Chang 7 to Chang 3 mebers in Qingcheng area,southwestern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(1): 145-156.
[5] YIN Yanshu, DING Wengang, AN Xiaoping, XU Zhenhua. Configuration characterization of Triassic Chang 611reservoir in Sai 160 well area of Ansai oilfield,Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(4): 37-49.
[6] QIN Jianhua, WANG Jianguo, LI Siyuan, LI Sheng, DOU Zhi, PENG Simi. Characteristics and formation mechanism of hydraulic fractures in tight conglomerate reservoirs of Triassic Baikouquan Formation in Mahu Sag [J]. Lithologic Reservoirs, 2023, 35(4): 29-36.
[7] XUE Nan, SHAO Xiaozhou, ZHU Guangyou, ZHANG Wenxuan, QI Yalin, ZHANG Xiaolei, OUYANG Siqi, WANG Shumin. Geochemical characteristics and formation environment of source rocks of Triassic Chang 7 member in northern Pingliang area,Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(3): 51-65.
[8] BAI Yang, ZHANG Xiaolei, GANG Wenzhe, ZHANG Zhongyi, YANG Shangru, PANG Jinlian, CAO Jingjing, HOU Yunchao. Characteristics and genesis of Upper Triassic Chang 8 reservoir with low oil saturation in northern Pingliang area, Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(3): 66-75.
[9] HUANG Yanqing, LIU Zhongqun, WANG Ai, XIAO Kaihua, LIN Tian, JIN Wujun. Types and distribution of tight sandstone gas sweet spots of the third member of Upper Triassic Xujiahe Formation in Yuanba area, Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(2): 21-30.
[10] WEN Wen, YANG Xiyan, XIANG Man, TAO Xiayan, YANG Rong, LI Yang, FAN Jiaxing, PU Baiyu. Characteristics and main controlling factors of oolitic shoal reservoirs of Triassic Feixianguan Formation in eastern Kaijiang-Liangping trough, Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(2): 68-79.
[11] XIAO Ling, CHEN Xi, LEI Ning, YI Tao, GUO Wenjie. Characteristics and main controlling factors of shale oil reservoirs of Triassic Chang 7 member in Heshui area, Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(2): 80-93.
[12] WEN Huaguo, LUO Bing, ZHONG Kexiu, FENG Qingping, LIU Lei, LIAO Yisha, PENG Cai, CAI Jialan, XU Wenli, ZHU Yixin, HAO Jing, LUO Xin, XU Xu. Discovery of Linshui-Fengdu intra-platform depression of Triassic Jialingjiang Formation in eastern Sichuan Basin and its significance for oil and gas exploration [J]. Lithologic Reservoirs, 2023, 35(1): 12-24.
[13] WEN Zhigang, LUO Yushu, LIU Jiangyan, ZHAO Chunyu, LI Shixiang, TIAN Weichao, FAN Yunpeng, GAO Heting. Pore structure characteristics and genetic mechanism of Triassic Chang 7 shale oil reservoir in Longdong area [J]. Lithologic Reservoirs, 2022, 34(6): 47-59.
[14] SU Yiqing, YANG Wei, JIN Hui, WANG Zhihong, CUI Junfeng, ZHU Qiuying, WU Xueqiong, BAI Zhuangzhuang. Deep-reservoir characteristics and main controlling factors of Triassic Xujiahe Formation in northwestern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(5): 86-99.
[15] PENG Miao, ZHANG Lei, TAO Jinyu, ZHAO Kang, ZHANG Xianghui, ZHANG Changmin. Quantitative characterization of gravel roundness of sandy conglomerates of Triassic Baikouquan Formation in Mahu Sag [J]. Lithologic Reservoirs, 2022, 34(5): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: