Lithologic Reservoirs ›› 2025, Vol. 37 ›› Issue (5): 193-200.doi: 10.12108/yxyqc.20250518
• PETROLEUM ENGINEERING AND OIL & GAS FIELD DEVELOPMENT • Previous Articles
CUI Yongzheng1,2, ZHOU Wensheng1,2, WEI Zhijie1,2, JIANG Ruizhong3
CLC Number:
[1] 孙福街. 中国海上油田高效开发与提高采收率技术现状及展望[J]. 中国海上油气,2023,35(5):91-99. SUN Fujie. Status and prospects of efficient development and EOR technologies in China offshore oilfields[J]. China Offshore Oil and Gas,2023,35(5):91-99. [2] 刘仁静,陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏,2024,36(3):180-188. LIU Renjing,LU Wenming. Mechanism and field practice of enhanced oil recovery by injection-production coupling in fault block reservoirs[J]. Lithologic Reservoirs,2024,36(3):180-188. [3] 黄斌,许瑞,傅程,等. 注采井间优势通道的多层次模糊识别方法[J]. 岩性油气藏,2018,30(4):105-112. HUANG Bin,XU Rui,FU Cheng,et al. Multi-level fuzzy identification method for interwell thief zone[J]. Lithologic Reservoirs,2018,30(4):105-112. [4] 吴忠维,崔传智,杨勇,等. 高含水期大孔道渗流特征及定量描述方法[J]. 石油与天然气地质,2018,39(4):839-844. WU Zhongwei,CUI Chuanzhi,YANG Yong,et al. Seepage characteristics and quantitative description of large pore pathways at high water cut stage[J]. Oil & Gas Geology,2018,39(4):839-844. [5] 张运来,廖新武,胡勇,等.海上稠油油田高含水期开发模式研究[J]. 岩性油气藏,2018,30(4):120-126. ZHANG Yunlai,LIAO Xinwu,HU Yong,et al. Development models for offshore heavy oil field in high water cut stage[J]. Lithologic Reservoirs,2018,30(4):120-126. [6] 赵艳红,姜汉桥,李洪奇. 注水开发油田注水通道状态辨识及预测方法[J]. 石油学报,2021,42(8):1081-1090. ZHAO Yanhong,JIANG Hanqiao,LI Hongqi. Identification and predictions of water injectivity for water injection channels in water injection development oilfield[J]. Acta Petrolei Sinica,2021,42(8):1081-1090. [7] 李传亮,王凤兰,杜庆龙,等. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏,2021,33(5):163-171. LI Chuanliang,WANG Fenglan,DU Qinglong,et al. Water displacement rules of sandstone reservoirs at extra-high water-cut stage[J]. Lithologic Reservoirs,2021,33(5):163-171. [8] CLARK K K. Transient pressure testing of fractured water injection wells[J]. Journal of Petroleum Technology,1968,20(6):639-643. [9] 钟会影,沈文霞,藏秋缘,等. 基于PEBI网格的考虑诱导裂缝的聚合物驱压力动态研究[J]. 岩性油气藏,2022,34(3):164-170. ZHONG Huiying,SHEN Wenxia,ZANG Qiuyuan,et al. Pressure transient of polymer flooding considering induced fractures based on PEBI grid[J]. Lithologic Reservoirs,2022,34(3):164-170. [10] ALAWAMI R L,TELLO GOMEZ A H,MORENO SIERRA F G,et al. Channel characterization in sandstone formation using pressure transient analysis:A practical overview to define geological attributes[R]. Dhahran,International Petroleum Technology Conference,2024. [11] 史有刚,曾庆辉,周晓俊. 大孔道试井理论解释模型[J]. 石油钻采工艺,2003,25(3):48-50. SHI Yougang,ZENG Qinghui,ZHOU Xiaojun. Interpreting model of larger pore well testing theory[J]. Oil Drilling &Production Technology,2003,25(3):48-50. [12] 李成勇,程华,蔡忠明,等. 考虑不对称优势渗流通道试井解释数学模型[J]. 大庆石油地质与开发,2011,30(2):129-132. LI Chengyong,CHENG Hua,CAI Zhongming,et al. Well test interpretation mathematical model considering asymmetric preferential seepage channel[J]. Petroleum Geology & Oilfield Development in Daqing,2011,30(2):129-132. [13] FENG Qihong,WANG Sen,ZHANG Wei,et al. Characterization of high-permeability streak in mature waterflooding reservoirs using pressure transient analysis[J]. Journal of Petroleum Science and Engineering,2013,110:55-65. [14] 谷建伟,樊兆亚,姜汉桥,等. 一种新的注入井大孔道解释模型[J]. 大庆石油地质与开发,2013,32(2):49-54. GU Jianwei,FAN Zhaoya,JIANG Hanqiao,et al. Well test interpreting method of the polymer-flooded high capacity channel oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing,2013,32(2):49-54. [15] 曾杨,康晓东,谢晓庆,等. 聚合物驱大孔道油藏试井解释方法[J]. 大庆石油地质与开发,2018,37(2):130-134. ZENG Yang,KANG Xiaodong,XIE Xiaoqing,et al. Well test interpreting method of the polymer flooded high capacity channel oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing,2018,37(2):130-134. [16] WANG Yang,CHENG Shiqing,FENG Naichao,et al. Semianalytical modeling for water injection well in tight reservoir considering the variation of waterflood-induced fracture properties:Case studies in Changqing Oilfield,China[J]. Journal of Petroleum Science and Engineering,2017,159:740-753. [17] 姜瑞忠,沈泽阳,崔永正,等. 双重介质低渗油藏斜井压力动态特征分析[J]. 岩性油气藏,2018,30(6):131-137. JIANG Ruizhong,SHEN Zeyang,CUI Yongzheng,et al. Dynamical characteristics of inclined well in dual medium low permeability reservoir[J]. Lithologic Reservoirs,2018,30(6):131-137 [18] VAN EVERDINGEN A F,HURST W. The application of the laplace transformation to flow problems in reservoirs[J]. Journal of Petroleum Technology,1949,1(12):305-324. [19] 郭晶晶,徐耀宏,杜佳,等. 复合致密油藏变导流能力压裂井不稳定压力动态分析[J]. 水动力学研究与进展A辑,2023, 38(4):612-620. GUO Jingjing,XU Yaohong,DU Jia,et al. Pressure transient analysis for fractured wells with variable conductivity in composite tight oil reservoirs[J]. Chinese Journal Of Hydrodynamics,2023,38(4):612-620. [20] BARREE R D,CONWAY M W. Beyond beta factors:A complete model for Darcy,Forchheimer,and trans-Forchheimer flow in porous media[R]. Houston,SPE Annual Technical Conference and Exhibition,2004. [21] BARREE R D,CONWAY M W. Multiphase non-Darcy flow in proppant packs[R]. Anaheim,SPE Annual Technical Conference and Exhibition,2007. [22] 崔永正,姜瑞忠,郜益华,等. 空间变导流能力压裂井CO2驱试井分析[J]. 岩性油气藏,2020,32(4):172-180. CUI Yongzheng,JIANG Ruizhong,GAO Yihua,et al. Pressure transient analysis of hydraulic fractured vertical wells with variable conductivity for CO2 flooding[J]. Lithologic Reservoirs, 2020,32(4):172-180. [23] 徐有杰,刘启国,王瑞,等. 复合油藏压裂水平井复杂裂缝分布压力动态特征[J]. 岩性油气藏,2019,31(5):161-168. XU Youjie,LIU Qiguo,WANG Rui,et al. Pressure transient of fractured horizontal well with complex fracture distribution in composite reservoir[J]. Lithologic Reservoirs,2019,31(5):161-168. [24] POE B D,SHAH P C,ELBEL J L. Pressure transient behavior of a finite-conductivity fractured well with spatially varying fracture properties[R]. Washington D.C.,SPE Annual Technical Conference and Exhibition,1992. [25] GUPPY K H,CINCO-LEY H,RAMEY H J,et al. Non-Darcy flow in wells with finite-conductivity vertical fractures[J]. SPE Journal,1982,22:681-698. |
[1] | NIE Renshi, ZHANG Yuqing, ZHOU Jie, YUAN Anyi, CAI Mingjin, ZHANG Tao, LU Cong, ZENG Fanhui. Oil-gas two-phase flow well testing model of horizontal well considering stress sensitivity and changing wellbore storage effects [J]. Lithologic Reservoirs, 2025, 37(4): 184-191. |
[2] | XU Youjie, REN Zongxiao, XIANG Zuping, FAN Xiaohui, YU Mengnan. Numerical well testing model of fractured well with complex fractures multi-well interference in heterogeneous tight gas reservoirs [J]. Lithologic Reservoirs, 2025, 37(3): 194-200. |
[3] | QIN Zhengshan, HE Yongming, DING Yangyang, LI Baihong, SUN Shuangshuang. Water invasion performance and main controlling factors for edge-water gas reservoirs [J]. Lithologic Reservoirs, 2024, 36(4): 178-188. |
[4] | LIU Renjing, LU Wenming. Mechanism and field practice of enhanced oil recovery by injection-production coupling in fault block reservoirs [J]. Lithologic Reservoirs, 2024, 36(3): 180-188. |
[5] | YU Yan, ZHOU Linlang, GAN Xiaofei, HU Yan, GAN Wenjin, DENG Zhuang. A triple-porosity flow model and its nonlinear flow characteristics with considering quadratic pressure gradient [J]. Lithologic Reservoirs, 2020, 32(5): 143-150. |
[6] | JIA Hongbing, ZHAO Hui, BAO Zhijing, ZHAO Guangjie, MAO Wei, LI Yaguang. New method for evaluating water flooding development effect and its oil field application [J]. Lithologic Reservoirs, 2019, 31(5): 101-107. |
[7] | TAO Shuai, HAO Yongmao, ZHOU Jie, CAO Xiaopeng, LI Xiaozhou. Reasonable pattern well spacing deployment of lens lithologic reservoirs with low permeability [J]. Lithologic Reservoirs, 2018, 30(5): 116-123. |
[8] | TIAN Liang, LI Jialing, JIAO Baolei. Filling mechanism and potential tapping direction of Ordovician karst reservoirs in block-12 of Tahe Oilfield [J]. Lithologic Reservoirs, 2018, 30(3): 52-60. |
[9] | ZHANG Liehui, SHAN Baochao, ZHAO Yulong, GUO Jingjing, TANG Hongming. Establishment of apparent permeability model and seepage flow model for shale reservoir [J]. Lithologic Reservoirs, 2017, 29(6): 108-118. |
[10] | YIN Shuai, XIE Runcheng, DING Wenlong, SHAN Yuming, ZHOU Wen. Influences of fractal characteristics of reservoir rocks on permeability [J]. Lithologic Reservoirs, 2017, 29(4): 81-90. |
|