Lithologic Reservoirs ›› 2025, Vol. 37 ›› Issue (6): 140-150.doi: 10.12108/yxyqc.20250613

• PETROLEUM EXPLORATION • Previous Articles    

Seismic prediction technology for complex network fractures in fault-fracture reservoir of tight sandstones: A case study of Triassic Xujiahe Formation in northern Sichuan Basin

MIAO Zhiwei1, LI Shikai1,2, ZHANG Wenjun1, XIAO Wei1, LIU Ming1, YU Tong1   

  1. 1. Exploration Company, Sinopec, Chengdu 610041, China;
    2. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
  • Received:2025-01-14 Revised:2025-03-10 Published:2025-11-07

Abstract: Through a"three-step"complex network fracture seismic comprehensive prediction technology, the seismic quantitative prediction of fracture development intensity and scale in different orientations and phases of the tight sandstone"fault-fracture body"reservoir of Xujiahe Formation in northern Sichuan Basin was carried out.The results show that: (1) The technical workflow of seismic prediction is as follows: Utilize high-resolution frequency-division ant tracking based on deconvolution generalized S-transform, to predict fracture phases and orientations by constructing a discrete grid model. Establish QVAZ equation for azimuthal attenuation elastic impedance based on the theory of attenuation anisotropy, and combine group sparse inversion to achieve prestack quantitative prediction of fracture density. Integrating the above two technologies for complementary advantages and overlapping analysis, complete the spatial description of complex network fractures.(2) The fractures in the "fault-fracture body" tight sandstone reservoir of Triassic Xujiahe Formation in Tongjiang area of northern Sichuan Basin mainly develop near faults, and their direction align with fault trends. These fractures are mainly of tectonic origin, local anticlines strata display relatively stable development. The tensional fractures associated with the folding process are not the sweet spots of the "fault-fracture body"reservoir, but the intersection of multiple large-scale fractures is a favorable area for the development of complex network fractures.(3) This method can perform high-definition identification of low sequence level faults, reducing the impact of low signal-to-noise ratio and lithological mutations in complex structural areas, avoiding the false appearance of fractures that may be caused by local stratigraphic folds, reducing the dependence of traditional methods on seismic data signal-to-noise ratio, and predicted interlayer micro-fractures with high resolution. The predicted results are in good agreement with the FMI interpretation and testing productivity of actual drilling. Based on this method, the newly deployed well M15 obtained industrial gas flow of 10.35×104 m3/d in the fourth member of Xujiahe Formation during gas testing.

Key words: “fault-fracture body” reservoir, tight sandstone, complex network fracture, anisotropy, time-frequency analysis, seismic inversion, ant tracking, Xujiahe Formation, Triassic, northern Sichuan Basin

CLC Number: 

  • TE122
[1] YIN Xingyao, MA Zhengqian, ZONG Zhaoyun, et al. Review of fracture prediction driven by the seismic rock physics theory (Ⅱ): Fracture prediction from five-dimensional seismic data[J]. Geophysical Prospecting for Petroleum, 2022, 61(3): 373-391. 印兴耀, 马正乾, 宗兆云, 等. 地震岩石物理驱动的裂缝预测技术研究现状与进展(Ⅱ): 五维地震裂缝预测技术[J]. 石油物探, 2022, 61(3): 373-391.
[2] MALLICK S, CRAFT K L, MEISTER L J, et al. Determination of the principal directions of azimuthal anisotropy from P-wave seismic data[J]. Geophysics, 1998, 63(2): 692-706.
[3] AL-MARZONG M, NSEVES A, KIN J, et al. P-wave anisotropy from azimuthal velocity and AVO using wide-azimuthal 3D seismic data[C]//Society of exploration geophysicists SEG technical program expanded abstracts 2004. Tulsa: Society of Exploration Geophysicists, 2004: 131-134.
[4] RÜGER A. Reflection coefficients and azimuthal AVO analysis in anisotropic media[C]//FITTERMAN D V. Geophysical monograph series No. 10. Tulsa: Society of Exploration Geophysicists, 2002.
[5] DOWNTON J E, ROURE B. Interpreting azimuthal Fourier coefficients for anisotropic and fracture parameters[J]. Interpretation, 2015, 3(3): ST9-ST27.
[6] PAN Xinpeng, ZHANG Guangzhi, YIN Xingyao. Probabilistic seismic inversion for reservoir fracture and petrophysical parameters driven by rock-physics models[J]. Chinese Journal of Geophysics, 2018, 61(2): 683-696. 潘新朋, 张广智, 印兴耀. 岩石物理驱动的储层裂缝参数与物性参数概率地震反演方法研究[J]. 地球物理学报, 2018, 61 (2): 683-696.
[7] CHEN Chao, YIN Xingyao, LIU Xiaojing, et al. Fracture density inversion based on azimuthal anisotropy and its application[J]. Chinese Journal of Geophysics, 2022, 65(1): 371-383. 陈超, 印兴耀, 刘晓晶, 等. 基于方位各向异性的裂缝密度反演方法及应用[J]. 地球物理学报, 2022, 65(1): 371-383.
[8] CHEN Huaizhen, YIN Xingyao, GAO Jianhu, et al. Seismic inversion for underground fractures detection based on effective anisotropy and fluid substitution[J]. Scientia Sinica(Terrae), 2015, 45(5): 589-600. 陈怀震, 印兴耀, 高建虎, 等. 基于等效各向异性和流体替换的地下裂缝地震预测方法[J]. 中国科学: 地球科学, 2015, 45 (5): 589-600.
[9] LI Shikai, WEN Xiaotao, PU Yong, et al. Fracture prediction based on attenuative anisotropy theory and its application to a shale gas reservoir[J]. Journal of Geophysics and Engineering, 2023, 20(2): 196-210.
[10] ZHANG Hui, GUAN Da, XIANG Xuemei, et al. Prediction for fractured tight sandstone reservoir of Xu 4 member in eastern Yuanba area, northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1): 133-139. 章惠, 关达, 向雪梅, 等. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133-139.
[11] WANG Wei, FAN Rui, LI Chengyin, et al. Exploration and prediction of promising fault-fracture reservoirs in the Xujiahe Formation, northeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 992-1001. 王威, 凡睿, 黎承银, 等. 川东北地区须家河组"断缝体"气藏有利勘探目标和预测技术[J]. 石油与天然气地质, 2021, 42 (4): 992-1001.
[12] YANG Jie, ZHANG Wenping, DING Chaolong, et al. Characteristics and main controlling factors of tight gas reservoirs in the second member of Triassic Xujiahe Formation, central Sichuan Basin[J]. Lithologic Reservoirs, 2025, 37(1): 137-148. 杨杰, 张文萍, 丁朝龙, 等. 川中地区三叠系须家河组二段致密气储层特征及主控因素[J]. 岩性油气藏, 2025, 37(1): 137-148.
[13] HUANG Yanqing, LIU Zhongqun, WANG Ai, et al. Types and distribution of tight sandstone gas sweet spots of the third member of Upper Triassic Xujiahe Formation in Yuanba area, Sichuan Basin[J]. Lithologic Reservoirs, 2023, 35(2): 21-30. 黄彦庆, 刘忠群, 王爱, 等. 四川盆地元坝地区上三叠统须家河组三段致密砂岩气甜点类型与分布[J]. 岩性油气藏, 2023, 35(2): 21-30.
[14] MA Delong, WANG Hongbin, ZHANG Xichen, et al. Analogue modeling of structural deformation of Tongnanba anticline in Mesozoic and Cenozoic, NE Sichuan Basin[J]. Earth Science, 2023, 48(4): 1307-1320. 马德龙, 王宏斌, 张希晨, 等. 川东北通南巴背斜中新生代构造变形的砂箱构造物理模拟[J]. 地球科学, 2023, 48(4): 1307-1320.
[15] ZHANG Rui, WEN Xiaotao, LI Shikai, et al. Application of frequency division ant-tracking in identifying deep minor fault[J]. Progress in Geophysics, 2017, 32(1): 350-356. 张瑞, 文晓涛, 李世凯, 等. 分频蚂蚁追踪在识别深层小断层中的应用[J]. 地球物理学进展, 2017, 32(1): 350-356.
[16] ZHOU Wen, YIN Taiju, ZHANG Yachun, et al. Application of ant tracking technology to fracture prediction: A case study from Xiagou Formation in Qingxi Oilfield[J]. Lithologic Reservoirs, 2015, 27(6): 111-118. 周文, 尹太举, 张亚春, 等. 蚂蚁追踪技术在裂缝预测中的应用: 以青西油田下沟组为例[J]. 岩性油气藏, 2015, 27(6): 111-118.
[17] CHEN Xuehua, HE Zhenhua, HUANG Deji, et al. Low frequency shadow detection of gas reservoirs in time-frequency domain[J]. Chinese Journal of Geophysics, 2009, 52(1): 215-221. 陈学华, 贺振华, 黄德济, 等. 时频域油气储层低频阴影检测[J]. 地球物理学报, 2009, 52(1): 215-221.
[18] ZHANG Yijiang, WEN Xiaotao, LIU Ting, et al. Seismic spectral imaging method based on deconvolutive generalized Stransform[J]. Science Technology and Engineering, 2017, 17 (15): 12-18. 张懿疆, 文晓涛, 刘婷, 等. 基于反褶积广义S变换的地震频谱成像方法研究[J]. 科学技术与工程, 2017, 17(15): 12-18.
[19] BAI T, TSVANKIN I. Time-domain finite-difference modeling for attenuative anisotropic media[J]. Geophysics, 2016, 81(2): 69-77.
[20] LI Shikai, PU Yong, MIAO Zhiwei, et al. Prestack fracture prediction based on attenuation anisotropy[J]. Geophysical Prospecting for Petroleum, 2025, 64(1): 163-173. 李世凯, 蒲勇, 缪志伟, 等. 基于衰减各向异性理论的叠前裂缝预测技术及应用[J]. 石油物探, 2025, 64(1): 163-173.
[21] XU Denghui, HAN Tongcheng, FU Liyun. Calculation method of dispersion and attenuation in the fractured rock with anisotropic background[J]. Chinese Journal of Geophysics, 2023, 66 (5): 2151-2166. 徐登辉, 韩同城, 符力耘. 背景为各向异性的含裂缝岩石频散和衰减计算方法研究[J]. 地球物理学报, 2023, 66(5): 2151-2166.
[22] CONNOLLY P. Elastic impedance[J]. The Leading Edge, 1999, 18(4): 438-452.
[23] TANG Shenglai. Geological modeling method and its application based on embedded multi-scale fracture model[J]. Special Oil & Gas Reservoirs, 2023, 30(1): 36-40. 唐圣来. 基于嵌入式多尺度裂缝模型的地质建模方法及应用[J]. 特种油气藏, 2023, 30(1): 36-40.
[24] ZHENG Hua, KANG Kai, LIU Weilin, et al. Main controlling factors and prediction of fractures in deep metamorphic buried hill reservoirs in Bohai Sea[J]. Lithologic Reservoirs, 2022, 34 (3): 29-38. 郑华, 康凯, 刘卫林, 等. 渤海深层变质岩潜山油藏裂缝主控因素及预测[J]. 岩性油气藏, 2022, 34(3): 29-38.
[25] YIN Xingyao, ZHANG Hongxue, ZONG Zhaoyun. Research status and progress of 5D seismic data interpretation in OVT domain[J]. Geophysical Prospecting for Petroleum, 2018, 57 (2): 155-178. 印兴耀, 张洪学, 宗兆云. OVT数据域五维地震资料解释技术研究现状与进展[J]. 石油物探, 2018, 57(2): 155-178.
[1] JIANG Mengya, JIANG Zhongfa, LIU Longsong, WANG Jiangtao, CHEN Hailong, WANG Xueyong, LIU Hailei. Hydrocarbon geochemical characteristics and source of Triassic Baijiantan Formation in Dabasong uplift, Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(6): 71-87.
[2] SU Shuai, QU Hongjun, YIN Hu, ZHANG Leigang, YANG Xiaofeng. Fractal characteristics of pore throat structure and their influence on reservoir physical properties of tight sandstone reservoir: A case study of Triassic Chang 8 member in Fuxian area, Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(6): 88-98.
[3] XING Qian, LI Yangfan, LI Xiang, WAN Ziqian, LI Yalan. Reservoir characteristics and main controlling factors of carbonate rock of Cambrian Xiannüdong Formation in Micangshan area, northern Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(4): 50-62.
[4] XIE Huiwen, ZHANG Liang, WANG Bin, LUO Haoyu, ZHANG Ke, ZHANG Guowei, LI Ling, SHEN Lin. Characteristics of Triassic paleostructure and their control on sedimentation in Kuqa Depression,Tarim Basin [J]. Lithologic Reservoirs, 2025, 37(3): 13-22.
[5] XIAO Wenhua, YANG Jun, YAN Baonian, WANG Jianguo, LI Shaoyong, MA Qilin, LI Zonglin, XUE Huanzhao. Characteristics and main controlling factors of Triassic Chang 8 tight sandstone reservoir in Huanqing area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(3): 23-32.
[6] DENG Gaoshan, DONG Xuemei, YU Haitao, ZHANG Jie, YUE Xiwei, REN Junmin, JIANG Tao. Hydrocarbon accumulation conditions and exploration potential of Triassic Baikouquan Formation in Shawan Sag,Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(3): 59-72.
[7] YANG Xu, BAI Mingsheng, GONG Hanbo, LI Gao, TAO Zuwen. Characteristics and quantitative prediction of structural fractures in the second member of Triassic Xujiahe Formation in Xinchang area, western Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(3): 73-83.
[8] ZHANG Zhaohui, ZHANG Jiaosheng, LIU Jungang, ZOU Jiandong, ZHANG Jianwu, LIAO Jianbo, LI Zhiyong, ZHAO Wenwen. Lithofacies identification using conventional logging curves and its exploration significance,Triassic Chang 81 sub-member,Longdong area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(3): 95-107.
[9] HE Xiaolong, ZHANG Bing, XU Chuan, XIAO Bin, TIAN Yunying, LI Zhuo, HE Yifan. Characteristics of calcareous interlayer in narrow channel sand body and their influence on reservoir quality:A case study of the first member of Jurassic Shaximiao Formation in Zitong area,northwestern Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(3): 129-139.
[10] LIU Yingbao, LI Yuanhao, ZHAI Wenbin, ZHAO Wenxuan, LI Zhe, YANG Longhua, GUO Yaqian. Types and genetic models of sand bodies in shallow water delta front of extremely gentle slope lake basin:A case study of Chang 81 submember of Triassic in Haotan area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(3): 140-152.
[11] LI Xiang, FU Lei, WEI Pu, LI Junfei, XU Gang, CAO Qianqian, ZHONG Yang, WANG Zhenpeng. Restoration of sedimentary paleogeography and its control on sedimentary system: A case study of the Triassic Baikouquan Formation in Shixi area of Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(2): 38-48.
[12] LIANG Feng, CAO Zhe. Characteristics,formation environment and enrichment model of Triassic Chang 7 shale oil reservoir in Huachi area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(1): 24-40.
[13] YANG Jie, ZHANG Wenping, DING Chaolong, SHI Cunying, MA Yunhai. Characteristics and main controlling factors of tight gas reservoirs in the second member of Triassic Xujiahe Formation,central Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(1): 137-148.
[14] WEI Huan, SHAN Changan, ZHU Songbai, HUANG Zhongxin, LIU Hanguang, ZHU Bing, WU Changtao. Fracture development characteristics and geological significance of tight sandstone of Cretaceous Bashijiqike Formation in Keshen area,Kuqa Depression [J]. Lithologic Reservoirs, 2025, 37(1): 149-160.
[15] WU Jia, ZHAO Weiwei, LIU Yuchen, LI Hui, XIAO Ying, YANG Di, WANG Jianan. Shale rock-reservoir collocation and hydrocarbon enrichment rule of Triassic Chang 7 member in Yan’an area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(1): 170-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: