Lithologic Reservoirs ›› 2026, Vol. 38 ›› Issue (1): 162-171.doi: 10.12108/yxyqc.20260114

• PETROLEUM EXPLORATION • Previous Articles    

Seismic prediction technology for coal rock gas reservoir of Carboniferous Benxi Formation in northern Mizhi area, Ordos Basin

ZHANG Mengbo1,2(), PENG Jiankang1(), CUI Xiaojie1,2, ZHANG Dong1, NI Na1, LONG Shengfang1, WEI Penghui3   

  1. 1 Research Institute of Exploration and Development, PetroChina Changqing Oilfield, Xi’an 710018, China
    2 National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Fields, Xi’an 710018, China
    3 Geoscience Solutions, Beijing 100102, China
  • Received:2025-04-01 Revised:2025-05-22 Online:2026-01-01 Published:2026-01-23
  • Contact: PENG Jiankang E-mail:zmb_cq@petrochina.com.cn;15010308496@163.com

Abstract:

Through well-to-seismic calibration, establishment of different surrounding rock lithology-coal rock models, and wave equation forward modeling, the lithologies, coal rock thickness, and seismic response characteristics of Carboniferous Benxi Formation surrounding rock in northern Mizhi area of Ordos Basin were analyzed. Three thickness prediction methods of coal rock gas reservoir, such as amplitude fitting method, impe-dance inversion method, and reflection coefficient inversion method, were contrasted and evaluated. The results show that: (1) The geological conditions of Carboniferous Benxi Formation coal rock gas reservoir in Mizhi area are complex. The overlying lithology are mainly sandstone, limestone, and mudstone. Physical properties of coal rock and surrounding rock strata are significant different, coal rock are with characteristics of low natural gamma, low density, high neutron, high acoustic time difference, and high resistivity. Different surrounding rocks have a significant impact on seismic response characteristics of coal rock layers, and the planar distribution of surrounding rocks can affect the accuracy of coal seam thickness prediction. (2) During wave equation forward modeling for different lithological combinations, when the coal rock thickness is less than the tuned thickness of 12.5 m, the amplitude value increases with the increase of coal rock thickness.When the thickness of coal rock reaches 12.5 m, the amplitude value reaches its peak.When the thickness of coal rock is greater than 12.5 m, the amplitude value begins to slowly decrease as the thickness of coal rock increases. (3) The reflection coefficient inversion method is suitable for the evaluation and development stages of coal rock gas reservoirs. The coal rock top and bottom re-interpretation technology is less affected by amplitude,and the predicted thickness of coal rock gas reservoir in the study area shows the highest consistency with the actual thickness, reaching 88.9%.

Key words: coal rock gas, seismic prediction, forward modeling, amplitude fitting, impedance inversion, reflection coefficient inversion, Benxi Formation, Carboniferous, northern Mizhi area, Ordos Basin

CLC Number: 

  • TE122.2

Fig. 1

Structural location of northern Mizhi area (a) and comprehensive stratigraghic column of Benxi-Shanxi formations (b), Ordos Basin"

Fig. 2

Well-tie contrast for No. 8 coal rock of Carboniferous Benxi Formation in northern Mizhi area, Ordos Basin"

Fig. 3

Acoustic time difference of different lithologies of Carboniferous Benxi Formation in northern Mizhi area of Ordos Basin"

Fig. 4

Density contrast of different lithologies of Carboniferous Benxi Formation in northern Mizhi area of Ordos Basin"

Fig. 5

Distribution characteristics of lithofacies from the top of No. 8 coal rock in Carboniferous Benxi Formation in northern Mizhi area of Ordos Basin"

Fig. 6

Well-to-seismic calibration of Carboniferous Benxi Formation in northern Mizhi area of Ordos Basin"

Table 1

Lithological combination model parameters for different strata of Carboniferous Benxi Formation in northern Mizhi area of Ordos Basin"

Fig. 7

Forward modeling results of coal rocks and different surrounding rock models of Carboniferous Benxi Formation in northern Mizhi area of Ordos Basin"

Fig. 8

Relationship between amplitude and thickness of different models of Carboniferous Benxi Formation coal rock in northern Mizhi area of Ordos Basin"

Fig. 9

Fitting curve of thickness and seismic root mean square amplitude of No. 8 coal rock in Carboniferous Benxi Formation in northern Mizhi area, Ordos Basin"

Fig. 10

Prediction of thickness plane distribution of No. 8 coal rock in Carboniferous Benxi Formation in northern Mizhi area of Ordos Basin using seismic reflection amplitude attribute fitting method"

Fig. 11

Longitudinal wave impedance of different lithologies of Carboniferous Benxi Formation in northern Mizhi area of Ordos Basin"

Fig. 12

Prediction of thickness distribution of No. 8 coal rock of Carboniferous Benxi Formation in northern Mizhi area of Ordos Basin using impedance inversion method"

Fig. 13

Comparison of conventional seismic profiles (a) and reflection coefficient inversion profiles (b) of Carboniferous Benxi Formation in northern Mizhi area of Ordos Basin"

Fig. 14

Prediction of the thickness plane distribution of No. 8 coal rock of Carboniferous Benxi Formation in northern Mizhi area of Ordos Basin using reflection coefficient inversion method"

Fig. 15

Comparison of predicted thickness and actual drilling coal rock thickness of No. 8 coal rock of Carboniferous Benxi Formation in northern Mizhi area of Ordos Basin"

[1] 接铭训. 鄂尔多斯盆地东缘煤层气勘探开发前景[J]. 天然气工业, 2010, 30(6):1-6.
JIE Mingxun. Prospects in coalbed methane gas exploration and production in the eastern Ordos Basin[J]. Natural Gas Industry, 2010, 30(6):1-6.
[2] 张国良, 贾高龙. 鄂尔多斯盆地东缘煤层气地质及勘探开发方向[J]. 中国煤层气, 2004, 1(1):17-20.
ZHANG Guoliang, JIA Gaolong. CBM geology and orientation of exploration and development of eastern fringe of Ordos Basin[J]. China Coalbed Methane, 2004, 1(1):17-20.
[3] 翟咏荷, 何登发, 开百泽. 鄂尔多斯盆地及邻区中—晚二叠世构造-沉积环境与原型盆地演化[J]. 岩性油气藏, 2024, 36(1):32-44.
doi: 10.12108/yxyqc.20240104
ZHAI Yonghe, HE Dengfa, KAI Baize. Tectonic-depositional environment and prototype basin evolution of Middle-Late Per-mian in Ordos Basin and adjacent areas[J]. Lithologic Reservoirs, 2024, 36(1):32-44.
doi: 10.12108/yxyqc.20240104
[4] 赵喆, 徐旺林, 赵振宇, 等. 鄂尔多斯盆地本溪组煤岩气地质特征与勘探突破[J]. 石油勘探与开发, 2024, 51(2):234-247.
doi: 10.11698/PED.20230679
ZHAO Zhe, XU Wanglin, ZHAO Zhenyu, et al. Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation,Ordos Basin,NW China[J]. Petroleum Exploration and Development, 2024, 51(2):234-247.
[5] 徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探, 2023, 51(1):115-130.
XU Fengyin, YAN Xia, LI Shuguang, et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration, 2023, 51(1):115-130.
[6] 江同文, 熊先钺, 金亦秋. 深部煤层气地质特征与开发对策[J]. 石油学报, 2023, 44(11):1918-1930.
doi: 10.7623/syxb202311013
JIANG Tongwen, XIONG Xianyue, JIN Yiqiu. Geological cha-racteristics and development countermeasures of deep coalbed methane[J]. Acta Petrolei Sinica, 2023, 44(11):1918-1930.
doi: 10.7623/syxb202311013
[7] 李国欣, 贾承造, 赵群, 等. 煤岩气成藏机理与煤系全油气系统[J]. 石油勘探与开发, 2025, 52(1):29-43.
doi: 10.11698/PED.20240790
LI Guoxin, JIA Chengzao, ZHAO Qun, et al. Coal-rock gas accumulation mechanism and the whole petroleum system of coal measures[J]. Petroleum Exploration and Development, 2025, 52(1):29-43.
[8] 牛小兵, 范立勇, 闫小雄, 等. 鄂尔多斯盆地煤岩气富集条件及资源潜力[J]. 石油勘探与开发, 2024, 51(5):972-985.
doi: 10.11698/PED.20230656
NIU Xiaobing, FAN Liyong, YAN Xiaoxiong, et al. Enrichment conditions and resource potential of coal-rock gas in Ordos Basin,NW China[J]. Petroleum Exploration and Development, 2024, 51(5):972-985.
[9] 胡朝元, 彭苏萍, 赵士华, 等. 煤层气储层参数多信息综合定量预测方法[J]. 煤田地质与勘探, 2005, 33(1):28-31.
HU Chaoyuan, PENG Suping, ZHAO Shihua, et al. The qualitative prediction of the coalbed gas reservoir parameters[J]. Coal Geology & Exploration, 2005, 33(1):28-31.
[10] 毕臣臣, 谢玮, 王彦春, 等. 四川盆地页岩储层正演模拟地震响应特征[J]. 科学技术与工程, 2020, 20(16):6350-6356.
BI Chenchen, XIE Wei, WANG Yanchun, et al. Seismic response characteristics of forward modeling of shale reservoirs in Sichuan Basin[J]. Science Technology and Engineering, 2020, 20(16):6350-6356.
[11] 李贵红. 鄂尔多斯盆地东缘煤层气有利区块优选[J]. 煤田地质与勘探, 2015, 43(2):28-32.
LI Guihong. Selection of the favorable coalbed methane (CBM) blocks in eastern Ordos basin[J]. Coal Geology & Exploration, 2015, 43(2):28-32.
[12] 郭少斌, 王义刚. 鄂尔多斯盆地石炭系本溪组页岩气成藏条件及勘探潜力[J]. 石油学报, 2013, 34(3):445-452.
doi: 10.7623/syxb201303004
GUO Shaobin, WANG Yigang. Shale gas accumulation conditions and exploration potential of Carboniferous Benxi Formation in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(3):445-452.
doi: 10.7623/syxb201303004
[13] 肖文华, 杨军, 严宝年, 等. 鄂尔多斯盆地环庆地区三叠系长8致密砂岩储层特征及成藏主控因素[J]. 岩性油气藏, 2025, 37(3):23-32.
doi: 10.12108/yxyqc.20250303
XIAO Wenhua, YANG Jun, YAN Baonian, et al. Characteristics and main controlling factors of Triassic Chang 8 tight sand‐stone reservoir in Huanqing area,Ordos Basin[J]. Lithologic Reservoirs, 2025, 37(3):23-32.
doi: 10.12108/yxyqc.20250303
[14] 席颖洋, 文志刚, 赵伟波, 等. 鄂尔多斯盆地东部石炭系本溪组页岩气地质特征及富集规律[J]. 天然气地球科学, 2022, 33(12):1936-1950.
doi: 10.11764/j.issn.1672-1926.2022.06.008
XI Yingyang, WEN Zhigang, ZHAO Weibo, et al. Study on geological characteristics and enrichment law of shale gas of Carboniferous Benxi Formation in eastern Ordos Basin[J]. Natural Gas Geoscience, 2022, 33(12):1936-1950.
doi: 10.11764/j.issn.1672-1926.2022.06.008
[15] 王子昕, 柳广弟, 袁光杰, 等. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5):133-144.
doi: 10.12108/yxyqc.20240513
WANG Zixin, LIU Guangdi, YUAN Guangjie, et al. Characte-ristics and reservoir control of source rocks of Triassic Chang 7 member in Qingcheng area,Ordos Basin[J]. Lithologic Reservoirs, 2024, 36(5):133-144.
doi: 10.12108/yxyqc.20240513
[16] 沈玉林, 郭英海, 李壮福, 等. 鄂尔多斯盆地东缘本溪组一太原组层序地层特征[J]. 地球学报, 2009, 30(2):187-193.
SHEN Yulin, GUO Yinghai, LI Zhuangfu, et al. Sequence stratigraphy of Benxi-Taiyuan Formation in eastern Ordos Basin[J]. Acta Geoscientica Sinica, 2009, 30(2):187-193.
[17] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36 (5):15-24.
doi: 10.12108/yxyqc.20240502
KONG Lingfeng, XU Jiafang, LIU Ding. Pore structure characteristics and dehydration evolution of lignite reservoirs of Jurassic Xishanyao Formation in Santanghu Basin[J]. Lithologic Reservoirs, 2024, 36(5):15-24.
doi: 10.12108/yxyqc.20240502
[18] 李启晖, 任大忠, 甯波, 等. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2):76-88.
doi: 10.12108/yxyqc.20240208
LI Qihui, REN Dazhong, NING Bo, et al. Micro-pore structure characteristics of coal seams of Jurassic Yan’an Formation in Shenmu area,Ordos Basin[J]. Lithologic Reservoirs, 2024, 36(2):76-88.
doi: 10.12108/yxyqc.20240208
[19] 王成旺, 冯延青, 杨海星, 等. 鄂尔多斯盆地韩城区块煤层气老井挖潜技术及应用[J]. 煤田地质与勘探, 2018, 46(5):212-218.
WANG Chengwang, FENG Yanqing, YANG Haixing, et al. Potential-tapping technology and its application in old CBM wells in Hancheng block of Ordos basin[J]. Coal Geology & Exploration, 2018, 46(5):212-218.
[20] 季敏, 陈双全. 基于数据驱动的合成地震记录技术及其应用研究[J]. 石油物探, 2011, 50(4):373-377.
doi: 10.3969/j.issn.1000-1441.2011.04.010
JI Min, CHEN Shuangquan. Data-driven synthetic seismogram technique and its application[J]. Geophysical Prospecting for Petroleum, 2011, 50(4):373-377.
doi: 10.3969/j.issn.1000-1441.2011.04.010
[21] 陈勇, 关达, 陈洪德, 等. 地震属性技术在煤层及煤层气储层预测中的应用[J]. 石油天然气学报, 2014, 36(7):65-69.
CHEN Yong, GUAN Da, CHEN Hongde, et al. Application of seismic attribute analysis technology in predicting coalbed and coalbed gas reservoir[J]. Journal of Oil and Gas Technology, 2014, 36(7):65-69.
[22] 李蔚林, 赵嘉良, 阮柳谭, 等. 基于空间自回归插值方法的煤层厚度预测研究[J]. 煤炭工程, 2024, 56(12):112-119.
LI Weilin, ZHAO Jialiang, RUAN Liutan, et al. Prediction of coal seam thickness based on spatial autoregressive interpolation[J]. Coal Engineering, 2024, 56(12):112-119.
[23] 汪玉玲, 解建建, 刘恋, 等. 约束稀疏脉冲反演在煤层厚度预测中的应用[J]. 山西煤炭, 2023, 43(4):115-121.
WANG Yuling, XIE Jianjian, LIU Lian, et al. Application of constrained sparse spike inversion in coal thickness prediction[J]. Shanxi Coal, 2023, 43(4):115-121.
[24] 张兆辉, 张皎生, 刘俊刚, 等. 鄂尔多斯盆地陇东地区三叠系长81亚段岩石相测井识别及勘探意义[J]. 岩性油气藏, 2025, 37(3):95-107.
doi: 10.12108/yxyqc.20250309
ZHANG Zhaohui, ZHANG Jiaosheng, LIU Jungang, et al. Lithofacies identification using conventional logging curves and its exploration significance,Triassic Chang 81 sub-member,Longdong area,Ordos Basin[J]. Lithologic Reservoirs, 2025, 37(3):95-107.
doi: 10.12108/yxyqc.20250309
[25] 彭真, 许辉群, 张伟. 自适应时窗多道相关的叠后地震波阻抗反演方法[J]. 石油地球物理勘探, 2024, 59(4):828-836.
PENG Zhen, XU Huiqun, ZHANG Wei. Post-stack seismic impedance inversion method with multi-channel correlation under adaptive window[J]. Oil Geophysical Prospecting, 2024, 59(4):828-836.
[26] 张雨强, 文晓涛, 吴昊, 等. 基于LP拟范数稀疏约束和交替方向乘子算法的波阻抗反演[J]. 石油物探, 2022, 61(5):856-864.
doi: 10.3969/j.issn.1000-1441.2022.05.010
ZHANG Yuqiang, WEN Xiaotao, WU Hao, et al. Seismic acoustic impedance inversion using LP quasi-norm sparse constraint and alternating direction multiplier algorithm[J]. Geophysical Prospecting for Petroleum, 2022, 61(5):856-864.
doi: 10.3969/j.issn.1000-1441.2022.05.010
[27] 周自强, 朱正平, 潘仁芳, 等. 基于波形相控反演的致密砂岩储层模拟预测方法:以黄骅坳陷沧东凹陷南部古近系孔二段为例[J]. 岩性油气藏, 2024, 36(5):77-86.
doi: 10.12108/yxyqc.20240508
ZHOU Ziqiang, ZHU Zhengping, PAN Renfang, et al. Simulation and prediction of tight sandstone reservoirs based on waveform facies-controlled inversion:A case study from the second member of Paleogene Kongdian Formation in southern Cangdong sag,Huanghua Depression[J]. Lithologic Reservoirs, 2024, 36(5):77-86.
doi: 10.12108/yxyqc.20240508
[28] 杜昕, 范廷恩, 范洪军, 等. 少井背景下基于稀疏层反射系数反演的薄层预测[J]. 石油地球物理勘探, 2021, 56(2):356-363.
DU Xin, FAN Tingen, FAN Hongjun, et al. Prediction of thin reservoirs with less well data based on sparse-layer reflectivity inversion[J]. Oil Geophysical Prospecting, 2021, 56(2):356-363.
[29] 张营, 杨立英. 反射系数反演方法研究及其在薄层识别中的应用[J]. 山东化工, 2015, 44(4):95-97.
ZHANG Ying, YANG Liying. The reflectivity inversion and its application in thin-bed[J]. Shandong Chemical Industry, 2015, 44(4):95-97.
[30] 纪永祯, 张渝悦, 朱立华, 等. 多道随机稀疏反射系数反演[J]. 石油物探, 2020, 59(6):912-917.
doi: 10.3969/j.issn.1000-1441.2020.06.009
JI Yongzhen, ZHANG Yuyue, ZHU Lihua, et al. Multi-trace stochastic sparse-spike inversion for reflectivity[J]. Geophysical Prospecting For Petroleum, 2020, 59(6):912-917.
doi: 10.3969/j.issn.1000-1441.2020.06.009
[1] CHEN Xuan, XU Xiongfei, ZHANG Hua, GOU Hongguang, ZHANG Yiting, YOU Fan, CHENG Yi, SUN Yufeng. Carboniferous volcanic reservoirs characteristics and favorable area prediction of the eastern Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(6): 13-27.
[2] QIU Zhengke, HOU Wenfeng, HUANG Huan, GAO Ruqi, ZHOU Lin, ZHANG Yuanmei, TIAN Jinshan, LI Hao. Characteristics of volcanic edifices and hydrocarbon accumulation models of the 6th and 7th blocks of Ke-Bai fault zone, Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(6): 48-58.
[3] SU Shuai, QU Hongjun, YIN Hu, ZHANG Leigang, YANG Xiaofeng. Fractal characteristics of pore throat structure and their influence on reservoir physical properties of tight sandstone reservoir: A case study of Triassic Chang 8 member in Fuxian area, Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(6): 88-98.
[4] LU Jiang, WANG Jian, WU Nan, LI Chengshan, FENG Zifei. Exploration potential of shale gas in Ordovician Wulalike Formation in the western margin of Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(5): 34-48.
[5] ZHAO Rundong, WANG Jinchang, LUO Yi, ZHOU Ruili, ZHOU Jian. A new calculation method for dynamic reserves of gas water coproduction volumetric gas reservoirs in Daniudi Gasfield of Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(5): 186-192.
[6] LI Zhenming, JIA Cunshan, WANG Bin, SONG Zhenxiang, QIU Qi, WANG Jiyuan, XU Chenjie, CUI Yuyao. Characteristics and resource potential of source rocks of Carboniferous Shiqiantan Formation in Shiqiantan Sag,eastern Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(4): 115-126.
[7] WANG Yonggang, DU Guanghong, HE Run, QU Chang, SHE Yuwei, HUANG Cheng. Geophysical identification and distribution prediction of weathered crust reservoirs in Lower Paleozoic of Longdong area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(4): 127-135.
[8] LI Gengtong, HE Dengfa. Development characteristics and oil-gas accumulation condition of the aulacogen in Dnieper-Donets Basin [J]. Lithologic Reservoirs, 2025, 37(4): 169-183.
[9] XIAO Wenhua, YANG Jun, YAN Baonian, WANG Jianguo, LI Shaoyong, MA Qilin, LI Zonglin, XUE Huanzhao. Characteristics and main controlling factors of Triassic Chang 8 tight sandstone reservoir in Huanqing area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(3): 23-32.
[10] ZHANG Zhaohui, ZHANG Jiaosheng, LIU Jungang, ZOU Jiandong, ZHANG Jianwu, LIAO Jianbo, LI Zhiyong, ZHAO Wenwen. Lithofacies identification using conventional logging curves and its exploration significance,Triassic Chang 81 sub-member,Longdong area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(3): 95-107.
[11] LIU Yingbao, LI Yuanhao, ZHAI Wenbin, ZHAO Wenxuan, LI Zhe, YANG Longhua, GUO Yaqian. Types and genetic models of sand bodies in shallow water delta front of extremely gentle slope lake basin:A case study of Chang 81 submember of Triassic in Haotan area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(3): 140-152.
[12] LIANG Feng, CAO Zhe. Characteristics,formation environment and enrichment model of Triassic Chang 7 shale oil reservoir in Huachi area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(1): 24-40.
[13] CHEN Peng, WU Xiaoning, LIN Yu, ZHONG Houcai, ZHANG Jie, HUANG Youhua, YUE Wen, LENG Ping. Carboniferous structural characteristics and hydrocarbon accumulation regularity of Chepaizi Uplift in Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(1): 68-77.
[14] GUI Shiqi, LUO Qun, HE Xiaobiao, WANG Qianjun, WANG Shichen, WANG Liang. Main controlling factors and hydrocarbon accumulation model of Carboniferous reservoir in Chepaizi Uplift,Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(1): 126-136.
[15] WU Jia, ZHAO Weiwei, LIU Yuchen, LI Hui, XIAO Ying, YANG Di, WANG Jianan. Shale rock-reservoir collocation and hydrocarbon enrichment rule of Triassic Chang 7 member in Yan’an area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(1): 170-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: