Lithologic Reservoirs ›› 2012, Vol. 24 ›› Issue (1): 40-45.doi: 10.3969/j.issn.1673-8926.2012.01.008

Previous Articles     Next Articles

Characteristics and evaluation of Chang 81 reservoir of Zhuang 36well area in Xifeng Oilfield

PAN Jingwen 1,2,WEN Zhigang 1,2,DIAO Fan 1,2,ZANG Chengguang 1,2   

  1. 1. Key Laboratory of Exploration Technology for Oil and Gas Resources, Ministry of Education, Yangtze University, Jingzhou 434023, China; 2. Department of Geochemistry, Yangtze University, Jingzhou 434023, China
  • Online:2012-02-20 Published:2012-02-20

Abstract:

In view of the problems of the oil yield decline and the rapid water saturation in single well of Zhuang 36 well area in Xifeng Oilfield, Ordos Basin, the logging data, rock section, scanning electronic microscope, X diffraction, grain size analysis and mercury penetration were used to analyze the lithology characteristics, physical properties, pore throat of Chang 81 reservoir. The result shows that Chang 81 reservoir belongs to low-ultra low porosity and low-ultra low permeability reservoir; the main sandstone is fine-grained lithic arkose; the reservoir mainly developed intergranular pore and dissolved pores; the pore throat structure is the type of small pore and micro throat. Sedimentation and diagenesis have impacted on the reservoir properties together, which leads that the physical properties of subsea distributary channel and mouth bar were better than that of channel frank. According to the physical properties and pore structure parameters, the reservoir in the study area can be divided into four types. The typeⅠbelongs to the best reservoirs, The type Ⅱ belongs to the good, the type Ⅲ belongs to the bad and the type Ⅳ belongs to the worst. The water producing wells mainly distributed in the reservoirs of the type Ⅳand type Ⅲ, and the oil yield in the wells of the type Ⅰ is good and stable.

Key words: horizontal gas well, deliverability, non-uniform damage, pressure drop along the wellbore, semi-analytic model, coupling

[1] 何自新.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社,2003:92-105.
[2] 黄龙,田景春,肖玲,等.鄂尔多斯盆地富县地区长6 砂岩储层特征及评价[J].岩性油气藏,2008,20(1):84-88.
[3] 赵澄林,胡爱梅,陈碧珏,等.中华人民共和国石油天然气行业标准:SY/T6285-1997 油气储层评价方法[S].北京:石油工业出版社,1998:16.
[4] 杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版社,2002:131-180.
[5] 魏钦廉,郑荣才,肖玲,等.鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J].岩性油气藏,2007,19(4):45-50.
[6] 李凤杰,王多云,徐旭辉.鄂尔多斯盆地陇东地区三叠系延长组储层特征及影响因素分析[J].石油实验地质,2005,27(4):365-369.
[7] 郑浚茂,庞明.碎屑储集岩的成岩作用研究[M].武汉:中国地质大学出版社,1989:61-63.
[8] 刁帆,文志刚.鄂尔多斯盆地胡尖山油田延长组长4+52储层特征及综合评价[J].岩性油气藏,2011,23(4):53-58.
[9] 贺艳祥,黄思静,胡作维,等.鄂尔多斯盆地姬源地区上三叠统延长组长8 油层组成岩作用研究[J].岩性油气藏,2010,22(2):42-47.
[10] 李福垲.砂岩油层中黏土矿物对储集层性质的影响[J].石油勘探与开发,1980,7(6):69-81.
[11] 王芳,张春生,肖梦华,等.安塞油田王窑地区长611 储层物性研究[J].岩性油气藏,2011,23(3):55-59.
[12] 徐波,孙卫.姬源油田长4+5 砂岩储层孔隙类型与成岩作用[J].吉林大学学报:地球科学版,2008,38(6):953-958.
[13] 汪洋,王桂成,王羽君,等.鄂尔多斯盆地郑庄油区延长组长6油层组储层特征[J].岩性油气藏,2010,22(3):48-52.
[14] 张路崎,陈恭洋.白豹—坪庄地区延长组长6 储层成岩作用研究[J].岩性油气藏,2009,21(1):75-82.
[15] 姚永朝,文志刚.西峰油田长8 油藏地质研究及储层评价[J].石油天然气学报,2005,27(3):419-421.
[16] 李南星,刘林玉,郑锐,等.鄂尔多斯盆地镇泾地区超低渗透储层评价[J].岩性油气藏,2011,23(2):41-45.
[17] 刘锐娥,李文厚,陈孟晋,等.鄂尔多斯东部下二叠统山西组2段储层评价及勘探前景[J]. 古地理学报,2006,8 (4):531-538.
[18] 赵靖舟,吴少波,武富礼.论低渗透储层的分类与评价标准———以鄂尔多斯盆地为例[J].岩性油气藏,2007,19(3):28-31.
[1] LIU Renjing, LU Wenming. Mechanism and field practice of enhanced oil recovery by injection-production coupling in fault block reservoirs [J]. Lithologic Reservoirs, 2024, 36(3): 180-188.
[2] YANG Lisha, CHEN Bintao, MA Lun, SHI Zhongsheng, XUE Luo, WANG Lei, SHI Jianglong, ZHAO Yanjun. Element feature and coupling model of source-to-sink system in depression lacustrine basin: A case study of Neogene Jimidi Formation in Melut Basin, South Sudan [J]. Lithologic Reservoirs, 2021, 33(3): 27-38.
[3] LUO Qun, WANG Jingling, LUO Jiaguo, WU Anbin. Hypothesis outline of fracture-pore coupling enriching hydrocarbon on unconventional oil and gas [J]. Lithologic Reservoirs, 2019, 31(4): 1-12.
[4] LI Xiaolong, XU Huaru, LIU Xiaoqiang, WANG Tao, ZHANG Kaiwen, QU Zhanqing. Fracture morphology and production performance of radial well fracturing [J]. Lithologic Reservoirs, 2017, 29(6): 154-160.
[5] HUANG Quanhua, TONG Kai, CHEN Chong, LU Yun, FU Yunhui. Pseudo-steady state deliverability for gas wells in thick gas reservoirs [J]. Lithologic Reservoirs, 2017, 29(6): 148-153.
[6] YAN Xiangyang, WANG Tengfei, HE Shuangxi, SHEN Beibei, XU Yonghui, CHEN Lin. Productivity simulation for fracturing horizontal gas wells considering overdisplacing operation [J]. Lithologic Reservoirs, 2017, 29(1): 140-146.
[7] YUAN Lin, LI Xiaoping, YAN Yichen, WANG Xiaolei, CHENG Ziyang. A new method to study the productivity of horizontal gas well after acidizing [J]. Lithologic Reservoirs, 2015, 27(2): 119-125.
[8] YUAN Lin, LI Xiaoping, ZHANG Jiqiang, CHENG Ziyang. Law of pressure drop along the horizontal wellbore in heavy oil reservoir [J]. Lithologic Reservoirs, 2014, 26(6): 115-119.
[9] ZHANG Jiqiang, LI Xiaoping, YUAN Lin, WANG Wenbin, WANG Chaowen. Influence of non-Darcy flow on deliverability of gas-water producing horizontal well in low permeability gas reservoirs [J]. Lithologic Reservoirs, 2014, 26(6): 120-125.
[10] HUANG Xiaohai,LI Xiaoping,YUAN Lin. Deduction and application of trinomial equation for water producing gas well with abnormal pressure [J]. Lithologic Reservoirs, 2014, 26(5): 119-123.
[11] ZHONG Jiajun, TANG Hai, LU Dongliang, ZHANG Zongda, LI Donglin. Study on a single point deliverability formula of horizontal wells in Sulige Gas Field [J]. Lithologic Reservoirs, 2013, 25(2): 107-111.
[12] CHEN Feng,LI Xiaoping,WANG Zitian,TIAN Min. A new deliverability model for horizontal gas well under non-uniform damage [J]. Lithologic Reservoirs, 2012, 24(1): 121-124.
[13] WEI Chenxing, LIAN Zhanghua, DING Liangliang, GUO Yanruo, HAN Tao. Analysis of seepage-stress coupling field for lateral wells [J]. Lithologic Reservoirs, 2011, 23(4): 124-128.
[14] WANG Dawei, LI Xiaoping. Advances in deliverability analysis of horizontal well [J]. Lithologic Reservoirs, 2011, 23(2): 118-123.
[15] ZHAO Jiancheng, LIU Shugen, SUN Wei, DAI Hansong, ZHANG Zhijing, DENG Bin. Analysis on petroleum preservation condition in the coupling area between Longmen Mountain and Sichuan Basin [J]. Lithologic Reservoirs, 2011, 23(1): 79-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Xiongqi,CHEN Dongxia, ZHANG Jun. Concept and categorize of subtle reservoir and problems in its application[J]. Lithologic Reservoirs, 2007, 19(1): 1 -8 .
[2] LEI Bianjun, ZHANG Ji,WANG Caili,WANG Xiaorong, LI Shilin, LIU Bin. Control of high r esolution sequence str atigr aphy on microfacies and reservoir s: A case from the upper Ma 5 member in Tong 5 wellblock, Jingbian Gas Field[J]. Lithologic Reservoirs, 2008, 20(1): 1 -7 .
[3] YANG Jie,WEI Pingsheng, LI Xiangbo. Basic concept, content and research method of petroleum seismogeology[J]. Lithologic Reservoirs, 2010, 22(1): 1 -6 .
[4] WANG Yan-qi1,HU Min-yi1,LIU Fu-yan1,WANG Hui1,HU Zhi-hua1,2. [J]. LITHOLOGIC RESERVOIRS, 2008, 20(3): 44 -48 .
[5] DAI Liming, LI Jianping, ZHOU Xinhuai, CUI Zhongguo, CHENG Jianchun. Depositional system of the Neogene shallow water delta in Bohai Sea area[J]. Lithologic Reservoirs, 2007, 19(4): 75 -81 .
[6] DUAN Youxiang, CAO Jing, SUN Qifeng. Application of auto-adaptive dip-steering technique to fault recognition[J]. Lithologic Reservoirs, 2017, 29(4): 101 -107 .
[7] HUANG Long, TIAN Jingchun, XIAO Ling, WANG Feng. Characteristics and evaluation of Chang 6 sandstone reservoir of Upper Triassic in Fuxian area, Ordos Basin[J]. Lithologic Reservoirs, 2008, 20(1): 83 -88 .
[8] YANG Shiwei, LI Jianming. Characteristics and geological significance of seismites[J]. Lithologic Reservoirs, 2008, 20(1): 89 -94 .
[9] LI Chuanliang, TU Xingwan. Two types of stress sensitivity mechanisms for reservoir rocks:Being favorable for oil recovery[J]. Lithologic Reservoirs, 2008, 20(1): 111 -113 .
[10] LI Jun, HUANG Zhilong, LI Jia, LIU Bo. The pool-forming pattern in the condition of arching in the southeast uplift in Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(1): 57 -61 .
TRENDMD: