Lithologic Reservoirs ›› 2014, Vol. 26 ›› Issue (6): 89-97.doi: 10.3969/j.issn.1673-8926.2014.06.015

Previous Articles     Next Articles

Thermolytic dynamics and hydrocarbon generation characteristics of Maoming Oil Shale: Taking the geological model of Qiongdongnan Basin as an example

LIU Chang1, SU Long 2,3, GUAN Baowen 2,3,4, ZHENG Youwei 2,3,4, CHANG Jiang 2,3, ZHENG Jianjing 2,3   

  1.  1. College of Geosciences , China University of Petroleum , Beijing 102249 , China ; 2. Key Laboratory of Petroleum Resources Research , Gansu Province , Lanzhou 730000 , China ; 3. Key Laboratory of Petroleum Resources Research , Institute of Geology and Geophysics , Chinese Academy of Sciences , Lanzhou 730000 , China ; 4. University of Chinese Academy of Sciences , Beijing 100049 , China
  • Online:2014-11-20 Published:2014-11-20

Abstract:

 In view of the natural gas generation and prediction problems under the condition of offshore high geothermal field, taking the geological model of Qiongdongnan Basin as an example, natural gas generation process was simulated by heating immature Maoming Oil Shale samples with kerogens of Ⅱ type and coal samples from the Qiongdongnan Basin with kerogens of Ⅲ type. In order to determine the characteristics of the yields of oil and gas generation derived from pyrolysis, we adopted the hydrous pyrolysis experiments in the closed system and non-isothermal
anhydrous pyrolysis experiments in the open system. The dynamics quantitative models of hydrocarbon generation of various hydrocarbon compositions in different evolution stages show that the range of activation energy distribution derived from different components of coal is much wider than that of Maoming Oil Shale. Among them, the ranges of activation energy distribution for methane, ethane, propane and heavy hydrocarbon
C46generated by Maoming Oil Shale derived from pyrolysis are from 38 to 86 kcal/mol, 44 to 92 kcal/mol, 43 to 77 kcal/mol and 46 to 70 kcal/mol respectively. And the dominant frequency of activation energy are 52 kcal/mol, 54 kcal/mol, 63 kcal/mol and 48 kcal/mol respectively, their percent are 20.44%, 38.04%, 42.5% and 25.05% respectively,and the pre-exponential factors are 6.47×1011 s-1, 2.70×1012 s-1, 1.09×1015 s-1 and 8.39×1015 s-1 respectively.Using the kinetic methods of natural gas generation, combined with the thermal history data from Qiongdongnan Basin, we contrasted the prediction of natural gas generation between Maoming Oil Shale and coal. It indicates that coal of
type Ⅲ releases hydrogen more slowly than Maoming Oil Shale of type Ⅱ during the thermal evolution, suggesting a lower hydrocarbon generative rate but a longer thermal evolutionary phase of hydrocarbon generation. The results reveal that: similar to the hydrocarbon source rocks of coal
-measures in Yacheng Formation of Qiongdongnan Basin, Maoming Oil Shale in high thermal evolutionary phase still has fine potential of natural gas generation under the condition of offshore high geothermal field. This study is more theoretical and practical significance to coal-type gas exploration and development in the wider areas of Chinese Sea.

 

Key words: volcanicrocks , loggingresponse , lithologyidentification , loggingcrossplot , imaginglogging , JunggarBasin

[1]戴金星,胡国艺,倪云燕,等.中国东部天然气分布特征[J].天然气地球科学,2009,20(4):471-487.
[2]Tissot B T,Durand B,Espitalie J,et al. Influence of nature and diagenesis of organic matter in formation of petroleum [J]. AAPG Bulletin,1974,58:499-506.
[3]Tissot B T,Welte D H. Petroleum Formation and Occurrences[M].Berlin:Springer, 1984:699.
[4]刘金钟,唐永春.用干酪根生烃动力学方法预测甲烷生成量之一例[J].科学通报,1998,43(11):1187-1191.
[5]Gaschnitz R,Krooss B M,Gerling P,et al. On-line pyrolysis-GCIRMS: Isotope fractionation of thermally generated from coals[J].Fuel, 2001,80(15):2139-2153.
[6]Behar F,Gillaizeau B,Derenne S,et al. Nitrogendist ribution in the pyrolysis products of a type Ⅱ kerogen (Cenomanian, Italy),timing of molecular nitrogen production versus other gases [J]. Energy & Fuels,2000,14:431-440.
[7]Ungerer P. State of the art in kinetic modeling of oil formation and expulsion[J]. Organic Geochemistry,1990,16(1):1-25.
[8]Su Long,Zheng Jianjing,Chen Guojun,et al. The upper limit of maturity of natural gas generation and its implication for the Yacheng Formation in the Qiongdongnan Basin,China[J]. Journal of Asian Earth Sciences,2012,54/55:203-213.
[9]刘全有,Krooss B M,金之钧,等.煤及显微组分在超高温开放体系实验中动力学参数确立与天然气形成过程预测[J].地学前缘,2009,16(1):167-172.
[10]Su Long,Lü Yuzhuo,Zheng Jianjing,et al. Thermolytic dynamics and prediction of natural gas generation from marine source rocks in the deepwater area of Qiongdongnan Basin,China [J]. Indian Journal of Geo-Marine Sciences,2014, 43(2):149-162.
[11]王拓,朱如凯,白斌,等.非常规油气勘探、评价和开发新方法[J].岩性油气藏,2013,25(6):35-39.
[12]关恒.基于液油比的特高含水期水驱开发指标预测方法[J].岩性油气藏,2013,25(5):100-103.
[13]张海茹,李昊.煤层气峰值产量拟合及产量动态预测方法研究[J].岩性油气藏,2013,25(4):116-118.
[14]Behar F,Tang Y,Liu J. Comparison of rate constants for some molecular tracers generated during artificial maturation of kerogens:Influence of kerogen type[J]. Organic Geochemistry,1997,26:281-287.
[15]Pepper A S,Corvi P J. Simple kinetic models of petroleum formation. Part 1:Oil and gas generation from kerogen[J]. Marine and Petroleum Geology, 1995, 12(3):291-319.
[16]胡国艺,李志生,罗霞,等.两种热模拟体系下有机质生气特征对比[J].沉积学报,2004,22(4):718-728.
[17]卢双舫,王民,王跃文,等.密闭体系与开放体系模拟实验结果的比较研究及其意义[J].沉积学报,2006, 24(2):282-288.
[18]王云鹏,赵长毅,王兆云,等.利用生烃动力学方法确定海相有机质的主生气期及其初步应用[J].石油勘探与开发,2005,32(4):153-158.
[19]米立军,袁玉松,张功成,等.南海北部深水区地热特征及其成因[J].石油学报,2009,30(1):27-32.
[20]吴景富,杨树春,张功成,等.南海北部深水区盆地热历史及气源岩热演化研究[J].地球物理学报,2013,56(1):170-180.
[21]王均,黄尚瑶,黄歌山,等.中国地温分布的基本特征[M].北京:地震出版社,1990.
[22]袁玉松,郭彤楼,胡圣标,等.下扬子苏南地区构造-热演化及烃源岩成烃史研究———以圣科 1 井为例[J].自然科学进展,2005,15(6):753-758.
[23]Yuan Yusong,Hu Shengbiao,Wang Hongjun,et al. Meso-Cenozoic tectonothermal evolution of Ordos basin,central China:Insights from newly acquired vitrinite reflectance data and a revision of existing paleothermal indicator data[J]. J. Geodynamics,2007,44 (1/2):33-46.
[24]袁玉松,马永生,胡圣标,等.中国南方现今地热特征[J].地球物理学报,2006,49(4):1118-1126.
[25]王良书,李成,刘绍文,等.塔里木盆地北缘库车前陆盆地地温梯度分布特征[J].地球物理学报,2003,46(3):403-407.
[26]王社教,胡圣标,汪集旸.准噶尔盆地热流及地温场特征[J].地球物理学报,2000,43(6):771-779.
[27]邱楠生,王绪龙,杨海波,等.准噶尔盆地地温分布特征[J].地质科学,2001,36(3):350-358.
[28]Yang Shuchun,Hu Shengbiao,Cai Dongsheng,et al. Present-day heat flow,thermal history and tectonic subsidence of the East China Sea Basin[J]. Marine and Petroleum Geology,2004,21(9):1095-1105.
[29]杨树春,胡圣标,蔡东升,等.南黄海南部盆地地温场特征及热-构造演化[J].科学通报,2003,48(14):1564-1569.
[30]胡圣标,何丽娟,汪集旸.中国大陆地区大地热流数据汇编(第三版)[J].地球物理学报,2001,44(5):611-626.
[31]朱伟林,张功成,杨少坤,等.南海北部大陆边缘盆地天然气地质[M].北京:石油工业出版社,2007.
[32]苏龙,郑建京,王琪,等.琼东南盆地超压的研究进展及形成机制[J].天然气地球科学,2012,23(4):662-672.
[33]黄保家,李绪深,王振峰,等.琼东南盆地深水区气源岩地球化学特征与天然气潜力[J].中国海上油气,2012,24(4):1-7.
[34]张功成,米立军,吴景富,等.凸起及其倾没端———琼东南盆地深水区大中型油气田有利勘探方向[J].中国海上油气,2010,22(6):360-368.
[35]侯读杰,王培荣,林壬子,等.茂名油页岩裂解气轻烃组成和热 演化特征[J].江汉石油学院学报,1989,11(4):7-11.
[36]Dieckmann V,Fowler M,Horsfield B. Predicting the composition of natural gas generated by the Duvernay Formation(Western Canada Sedimentary Basin) using a compositional kinetic approach [J].Organic Geochemistry,2004,35:845-862.
[37]张功成,何玉平,沈怀磊.琼东南盆地崖北凹陷崖城组气源岩分布及其意义[J].天然气地球科学,2012, 23(4):654-661.
[38]张义娜,张功成,何玉平,等.琼东南盆地北礁凹陷崖城组沉积与气源岩发育特征[J].天然气地球科学,2013, 24(4):725-732.
[39]李增学,何玉平,刘海燕,等.琼东南盆地崖城组煤的沉积学特征与聚煤模式[J].石油学报,2010, 31(4):542-547.
[1] Zhou Wen, Yin Taiju, Zhang Yachun, Li Weiqiang, Wang Dongdong. Application of ant tracking technology to fracture prediction:A case study from Xiagou Formation in Qingxi Oilfield [J]. LITHOLOGIC RESERVOIRS, 2015, 27(6): 111-118.
[2] ZHANG Daquan,ZOU Niuniu,JIANG Yang,MA Chongyao,ZHANG Shuncun,DU Shekuan. Logging identification method of volcanic rock lithology: A case study from volcanic rock in Junggar Basin [J]. Lithologic Reservoirs, 2015, 27(1): 108-114.
[3] WEN Huaguo,JIA Bin,JIANG Yiqin,JIN Jun,QI Liqi,LI Lulu. Controlling factors for natural productivity of the second member of Toutunhe Formation in eastern Fukang slope, Junggar Basin [J]. Lithologic Reservoirs, 2014, 26(2): 9-14.
[4] YAN Xue, ZHENG Rongcai, WEN Huaguo, HUANG Jianliang, JIANG Huan, ZHANG Tao. Reservoir characteristics and favorable areas prediction of Jurassic Toutunhe Formation in eastern Fukang slope, Junggar Basin [J]. Lithologic Reservoirs, 2014, 26(2): 74-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[2] FANG Chaohe, WANG Yifeng, ZHENG Dewen, GE Zhixin. Maceral and petrology of Lower Tertiary source rock in Qintong Sag, Subei Basin[J]. Lithologic Reservoirs, 2007, 19(4): 87 -90 .
[3] LIN Chengyan, TAN Lijuan, YU Cuiling. Research on the heterogeneous distribution of petroleum(Ⅰ)[J]. Lithologic Reservoirs, 2007, 19(2): 16 -21 .
[4] WANG Tianqi, WANG Jiangong, LIANG Sujuan, SHA Xuemei. Fine oil exploration of Putaohua Formation in Xujiaweizi area, Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(2): 22 -27 .
[5] WANG Xiwen,SHI Lanting,YONG Xueshan,YNAG Wuyang. Study on seismic impedance inversion[J]. Lithologic Reservoirs, 2007, 19(3): 80 -88 .
[6] HE Zongbin,NI Jing,WU Dong,LI Yong,LIU Liqiong,TAI Huaizhong. Hydrocarbon saturation determined by dual-TE logging[J]. Lithologic Reservoirs, 2007, 19(3): 89 -92 .
[7] YUAN Shengxue,WANG Jiang. Identification of the shallow gas reservoir in Shanle area,Tuha Basin[J]. Lithologic Reservoirs, 2007, 19(3): 111 -113 .
[8] CHEN Fei,WEI Dengfeng,YU Xiaolei,WU Shaobo. Sedimentary facies of Chang 2 oil-bearing member of Yanchang Formation in Yanchi-Dingbian area, Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(1): 43 -47 .
[9] XU Yunxia,WANG Shanshan,YANG Shuai. Using Walsh transform to improve signal-to-noise ratio of seismic data[J]. Lithologic Reservoirs, 2009, 21(3): 98 -100 .
[10] LI Jianming,SHI Lingling,WANG Liqun,WU Guangda. Characteristics of basement reservoir in Kunbei fault terrace belt in southwestern Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(2): 20 -23 .
TRENDMD: