Lithologic Reservoirs ›› 2007, Vol. 19 ›› Issue (4): 9-12.doi: 10.3969/j.issn.1673-8926.2007.04.002

Previous Articles     Next Articles

Control of base level cycles on channel sand geometry:A case study on ZaoⅡ-Ⅲ reservoirs, Zaoyuan Oilfield

ZHANG Changmin1, YIN Taiju1, LI Shaohua1, XIONG Fujun2   

  1. 1. School of Geosciences, Yangtze University, Jingzhou 434023, China; 2. Well Logging Company, CNPC Sichuan Petroleum, Chongqing 400021, China
  • Online:2007-12-15 Published:2007-12-15

Abstract:

Reservoirs of ZaoⅡ and Zao Ⅲ of the first member of Kongdian Formation in Zaoyuan Oilfield are dominated by channel sands developed on alluvial fans. Three long-term base level cycles and 11 middle-term base level cycles are recognized in ZaoⅡ and ZaoⅢ reservoirs, and each middle-term cycle is composed of one to five short-term base level cycles. Short-term cycles can be divided into high and low accommodation space cycles which represent two kinds of channel sand bodies with ifferent characteristics. Middle-term cycles can be classified into symmetry and asymmetry types. Sediments at high accommodation stage of long-term cycle are mainly mud, with single channel inserted in. With the rise of the long-term base level, the ratio of width to thickness of sand bodies increases and sand content decreases.

Key words: shallow lacustrine delta, lithologic reservoirs, sheeted distributary channels, high resolution sequence stratigraphy, sedimentary mode, Putaohua Formation, Songliao Basin

[ 1] 付国民, 郑荣才, 赵俊兴, 等, 鄂尔多斯盆地环县地区延安组高分辨率层序地层学特征[J] .中国矿业大学学报, 2005,34(3) : 394-399.
[ 2] 赵宏刚, 陈全红, 王文武, 等.鄂尔多斯盆地南部上三叠统层序地层学研究[ J] .西北地质, 2003, 36( 4) : 35- 38.
[ 3] 李凤杰, 王多云.鄂尔多斯盆地西峰油田延长组高分辨率层序地层学研究[ J] .天然气地球科学, 2006, 17( 3) : 339- 344.
[ 4] 张义楷, 孙伟.盘古梁长6油层组高分辨率层序地层分析对比[ J] . 煤田地质与勘探, 2006, 34( 2) : 5- 8.
[ 5] 罗静兰, Ketzer J M, 李文厚, 等.延长油区侏罗系—上三叠统层序地层与生储盖组合[J] .石油与天然气地质, 2001, 22(4) : 337-341.
[ 6] 杨华, 刘显阳, 张才利, 等.鄂尔多斯盆地三叠系延长组低渗透岩性油藏主控因素及其分布规律[ J] .岩性油气藏, 2007, 19( 3) :1- 6.
[ 7] 蒋家钰.鄂尔多斯盆地储层横向预测技术[M] .北京: 石油工业出版社, 2005: 139- 145.
[1] RAN Yixuan, WANG Jian, ZHANG Yi. Favorable exploration area and formation condition of bedrock reservoir in the of central paleo-uplift,northern Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(6): 66-76.
[2] QU Weihua, TIAN Ye, DONG Changchun, GUO Xiaobo, LI Lili, LIN Siya, XUE Song, YANG Shihe. Characteristics of Cretaceous source rocks and their controlling effect on hydrocarbon accumulation in Dehui Fault Depression,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(6): 122-134.
[3] WANG Hongxing, HAN Shiwen, HU Jia, PAN Zhihao. Prediction and main controlling factors of tuff reservoirs of Cretaceous Huoshiling Formation in Dehui fault depression,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(5): 35-45.
[4] YI Zhenli, SHI Fang, YIN Taiju, LI Bin, LI Meng, LIU Liu, WANG Zhukun, YU Ye. Provenance transformation and sedimentary filling response of Mesozoic in Halahatang-Hade area,Tarim Basin [J]. Lithologic Reservoirs, 2024, 36(5): 56-66.
[5] YANG Weihua. Hydrocarbon accumulation model and main controlling factors of tight oil of the fourth member of Cretaceous Yingcheng Formation in Shuangcheng fault depression,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(4): 25-34.
[6] HE Wenyuan, ZHAO Ying, ZHONG Jianhua, SUN Ningliang. Characteristics and significance of micron pores and micron fractures in shale oil reservoirs of Cretaceous Qingshankou Formation in Gulong sag,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(3): 1-18.
[7] NIU Chengmin, HUI Guanzhou, DU Xiaofeng, GUAN Dayong, WANG Bingjie, WANG Qiming, ZHANG Hongguo. Sedimentary model of sublacustrine fan of the third member of Paleogene Dongying Formation and large-scale oilfield discovered in western slope of Liaozhong Sag [J]. Lithologic Reservoirs, 2024, 36(2): 33-42.
[8] WANG Tianhai, XU Duonian, WU Tao, GUAN Xin, XIE Zaibo, TAO Huifei. Sedimentary facies distribution characteristics and sedimentary model of Triassic Baikouquan Formation in Shawan Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(1): 98-110.
[9] HONG Guoliang, WANG Hongjun, ZHU Houqin, BAI Zhenhua, WANG Wenwen. Hydrocarbon accumulation conditions and favorable zones of lithologic reservoirs of Miocene Gumai Formation in block J,South Sumatra Basin [J]. Lithologic Reservoirs, 2023, 35(6): 138-146.
[10] XIA Mingjun, SHAO Xinjun, YANG Hua, WANG Zhongsheng, LI Zhiyu, ZHANG Chaoqian, YUAN Ruier, FA Guifang. Classification and categorization method of overseas lithologic reservoir reserves [J]. Lithologic Reservoirs, 2023, 35(6): 37-44.
[11] LIU Jiguo, ZHOU Hongpu, QIN Yanqun, ZOU Quan, ZHENG Fengyun, LI Zaohong, XIAO Gaojie. Exploration potential of lithologic reservoirs of Cretaceous AG Formation in Fula Sag,Muglad Basin,Africa [J]. Lithologic Reservoirs, 2023, 35(6): 82-91.
[12] ZHANG Changmin, ZHANG Xianghui, ZHU Rui, FENG Wenjie, YIN Taiju, YIN Yanshu, Adrian J. HARTLEY. Research progress and application prospect of distributive fluvial system [J]. Lithologic Reservoirs, 2023, 35(5): 11-25.
[13] DU Changpeng. Natural gas accumulation conditions and main controlling factors of Cretaceous tight volcanic rocks in Yingshan-Shuangcheng fault depression,Songliao Basin [J]. Lithologic Reservoirs, 2023, 35(4): 115-124.
[14] NIU Chengmin, DU Xiaofeng, WANG Qiming, ZHANG Can, DING Yiran. Formation conditions and exploration direction of large-scale lithologic reservoirs of Cenozoic in Bohai Sea [J]. Lithologic Reservoirs, 2022, 34(3): 1-14.
[15] LIU Zongbao, LI Xue, ZHENG Ronghua, LIU Huaqing, YANG Zhanlong, CAO Song. Sedimentary characteristics and models of shallow water delta front subfacies reservoirs: A case study of Sapugao oil layer in north-Ⅱ block of Sabei oilfield, Daqing placanticline [J]. Lithologic Reservoirs, 2022, 34(1): 1-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Xiongqi,CHEN Dongxia, ZHANG Jun. Concept and categorize of subtle reservoir and problems in its application[J]. Lithologic Reservoirs, 2007, 19(1): 1 -8 .
[2] LEI Bianjun, ZHANG Ji,WANG Caili,WANG Xiaorong, LI Shilin, LIU Bin. Control of high r esolution sequence str atigr aphy on microfacies and reservoir s: A case from the upper Ma 5 member in Tong 5 wellblock, Jingbian Gas Field[J]. Lithologic Reservoirs, 2008, 20(1): 1 -7 .
[3] YANG Jie,WEI Pingsheng, LI Xiangbo. Basic concept, content and research method of petroleum seismogeology[J]. Lithologic Reservoirs, 2010, 22(1): 1 -6 .
[4] WANG Yan-qi1,HU Min-yi1,LIU Fu-yan1,WANG Hui1,HU Zhi-hua1,2. [J]. LITHOLOGIC RESERVOIRS, 2008, 20(3): 44 -48 .
[5] DAI Liming, LI Jianping, ZHOU Xinhuai, CUI Zhongguo, CHENG Jianchun. Depositional system of the Neogene shallow water delta in Bohai Sea area[J]. Lithologic Reservoirs, 2007, 19(4): 75 -81 .
[6] DUAN Youxiang, CAO Jing, SUN Qifeng. Application of auto-adaptive dip-steering technique to fault recognition[J]. Lithologic Reservoirs, 2017, 29(4): 101 -107 .
[7] HUANG Long, TIAN Jingchun, XIAO Ling, WANG Feng. Characteristics and evaluation of Chang 6 sandstone reservoir of Upper Triassic in Fuxian area, Ordos Basin[J]. Lithologic Reservoirs, 2008, 20(1): 83 -88 .
[8] YANG Shiwei, LI Jianming. Characteristics and geological significance of seismites[J]. Lithologic Reservoirs, 2008, 20(1): 89 -94 .
[9] LI Chuanliang, TU Xingwan. Two types of stress sensitivity mechanisms for reservoir rocks:Being favorable for oil recovery[J]. Lithologic Reservoirs, 2008, 20(1): 111 -113 .
[10] LI Jun, HUANG Zhilong, LI Jia, LIU Bo. The pool-forming pattern in the condition of arching in the southeast uplift in Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(1): 57 -61 .
TRENDMD: