Lithologic Reservoirs ›› 2021, Vol. 33 ›› Issue (4): 156-165.doi: 10.12108/yxyqc.20210417

• OIL AND GAS FIELD DEVELOPMENT • Previous Articles     Next Articles

Pressure response behavior and application of commingled well in vertical combined boundary reservoir

SHI Wenyang1, CHENG Shiqing1, SHI Zhiliang2, ZHANG Chengwei1, LI Hong1, TU Kun1, ZHANG Yuzhe3   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    2. Sinopec Research Institute of Petroleum Exploration and Production, Beijing 100083, China;
    3. No. 1 Gas Production Plant, Sinopec North China Oil and Gas Company, Zhengzhou 450006, China
  • Received:2021-01-25 Revised:2021-04-18 Online:2021-08-01 Published:2021-08-06

Abstract: Given current commingled reservoir well test model is single boundary type, this paper takes the doublelayer reservoir as an example to establish a vertical combined boundary(VCB)reservoir model,and the pressure response semi-analytical solution is obtained by Laplace transformation,Bessel function,Stehfest inversion. The pressure response curves of three VCB types were drawn and the flow stages were divided. The effects of VCB types,proportion on the pressure response were analyzed. The result is shown as follows: (1)The "closed and infinite" boundary will cause pseudo-radial flow regime, and the product between the pressure derivative in pseudo-radial flow stage and closed-boundary proportion is constant.(2)The "constant-pressure and infinite" boundary causes the pseudo constant-pressure boundary flow regime,and the pressure derivative slope in pseudo constant-pressure boundary flow stage is linearly related to the constant-pressure boundary proportion. (3)The "constant-pressure and closed" boundary appears the dominant layer boundary flow regime first,followed by the constant-pressure boundary flow regime,and the product between pressure value in constant-pressure boundary flow stage and constant-pressure proportion is constant. It is concluded that the pressure response can directly diagnose the VCB type,and pressure response feature value in the boundary flow stage can quickly determine the VCB proportion. In addition,when the pressure response appears the features of the radial composite reservoir with poor permeability outer zone or dual-porosity reservoir,the well test analysis model should be carefully selected in combination with the actual reservoir geological information.

Key words: multilayer commingled reservoir, vertical combined boundary, seepage flow, well test analysis

CLC Number: 

  • TE353.2
[1] SUN B, SHI W Y, Zhang R, et al. Transient behavior of vertical commingled well in vertical non-uniform boundary Radii reservoir. Energies, 2020, 13(9):2305.
[2] LEFKOVITS H C, HAZEBROEK P, ALLEN E E, et al. A study of the behavior of bounded reservoirs composed of stratified layers. SPE Journal, 1961, 1(1):43-58.
[3] 徐献芝, 况国华, 陈峰磊, 等.多层合采试井分析方法.石油学报, 1999, 20(5):43-47. XU X Z, KUANG G H, CHEN F L, et al. Multilayer commingled well test analysis method. Acta Petrolei Sinica, 1999, 20(5):43-47.
[4] 张望明, 韩大匡, 连淇祥, 等.多层油藏试井分析.石油勘探与开发, 2001, 38(3):63-66. ZHANG W M, HAN D K, LIAN Q X, et al. Multilayer reservoir well test analysis. Petroleum Exploration and Development, 2001, 38(3):63-66.
[5] 李顺初, 张普斋, 黄炳光.多层油藏压力分布的一般解.西南石油学院学报, 2002, 24(4):28-29. LI S C, ZHANG P Z, HUANG B G, et al. General solution of pressure distribution in multilayer reservoir. Journal of Southwest Petroleum University(Science & Technology Edition), 2002, 24(4):28-29.
[6] 高承泰, 孙贺东.多层越流油气藏试井分析方法.北京:石油工业出版社, 2018. GAO C T, SUN H D. Well test analysis method for multilayer crossflow oil and gas reservoir. Beijing:Petroleum Industry Press, 2018.
[7] 孙贺东, 高承泰, 周芳德.具有越流的多层气藏的压力曲线特征.西安石油学院学报(自然科学版), 2001, 16(6):25-29. SUN H D, GAO C T, ZHOU F D. Characteristics of pressure curve of multilayer gas reservoir with overflow. Journal of Xi'an Shiyou University(Natural Science Edition), 2001, 16(6):25-29.
[8] 孙贺东, 周芳德, 高承泰, 等.三层越流油藏井底压力的精确解.石油钻采工艺, 2003, 25(3):41-44. SUN H D, ZHOU D F, GAO C T. Exact solution and typical curve of three layers crossflow reservoir. Oil Drilling & Production Technology, 2003, 25(3):41-44.
[9] 程时清. 复杂结构井试井分析理论与方法. 北京:科学出版社, 2018. CHENG S Q. Theory and method of well test analysis for complex structure wells. Beijing:Science Press, 2018.
[10] 贾英兰.多层油气藏复杂渗流理论与试井分析方法研究.成都:西南石油大学, 2014. JIA Y L. Study on complex seepage theory and well test analysis method for multilayer oil and gas reservoirs. Chengdu:Southwest Petroleum University, 2014.
[11] 何应付, 尹洪军, 林木, 等.任意形状复合油藏压力动态的边界元分析.水动力学研究与进展(A辑), 2006, 21(6):700-705. HE Y F, YIN H J, LIN M, et al. Pressure transient analysis of composite reservoir using the boundary element method. Chinese Journal of Hydrodynamics, 2006, 21(6):700-705.
[12] 郭显赋, 梁景伟, 孙德巨, 等.复杂边界裂缝性低渗油藏有限元试井.断块油气田, 2011, 18(1):87-90. GUO X B, LIANG J W, SUN D J, et al. Finite-element well testing of low-permeability fractured reservoir with complex outer-boundary. Fault-Block Oil & Gas Field, 2011, 18(1):87-90.
[13] SHI W Y, CHENG S Q, MENG L X, et al. Pressure transient behavior of layered commingled reservoir with vertical inhomogeneous closed boundary. Journal of Petroleum Science and Engineering, 2020, 189(6):106995.
[14] 郑荣臣, 严谨, 张郁哲, 等.多层压裂改造气井椭圆渗流压力动态特征.断块油气田, 2020, 27(2):207-212. ZHENG R C, YAN J, ZHANG Y Z, et al. Pressure transient behavior of multi-layer fracturing gas wells with elliptical flow. Fault-Block Oil and Gas Field, 2020, 27(2):207-212.
[15] 赵向原, 胡向阳, 肖开华, 等.川西彭州地区雷口坡组碳酸盐岩储层裂缝特征及主控因素.石油与天然气地质, 2018, 39(1):30-39. ZHAO X Y, HU X Y, XIAO K H, et al. Characteristics and major control factors of natural fractures in carbonate reservoirs of Leikoupo Formation in Pengzhou area, western Sichuan Basin. Oil & Gas Geology, 2018, 39(1):30-39.
[16] 王志宏, 郝翠果, 李建明, 等.川西前陆盆地超压分布及成因机制.岩性油气藏, 2019, 31(6):1-8. WANG Z H, HAO C G, LI J M,et al. Distribution and genetic mechanism of overpressure in western Sichuan foreland basin. Lithologic Reservoirs, 2019, 31(6):1-8.
[17] 王登, 余江浩, 赵雪松, 等.四川盆地石柱地区自流井组页岩气成藏条件与勘探前景.岩性油气藏, 2020, 32(1):27-35. WANG D, YU J H, ZHAO X S, et al. Accumulation conditions and exploration potential of shale gas of Ziliujing Formation in Shizhu area. Lithologic Reservoirs, 2020, 32(1):27-35.
[18] 史文洋, 姚约东, 程时清, 等.川西潮坪相裂缝型碳酸盐岩分层酸压井压力动态分析.岩性油气藏, 2020, 32(1):152-160. SHI W Y, YAO Y D, CHENG S Q, et al. Pressure transient analysis for separate-layer acid fracturing well of tidal flat fractured carbonate reservoirs in western Sichuan Basin. Lithologic Reservoirs, 2020, 32(1):152-160.
[19] 罗志锋, 黄静云, 何天舒, 等.碳酸盐岩储层酸压裂缝高度延伸规律:以川西栖霞组为例.岩性油气藏, 2020, 32(2):169-176. LUO Z F, HUANG J Y, HE T S, et al. Extending regularity of fracture height by acid fracturing in carbonate reservoir:A case study of Qixia Formation in western Sichuan. Lithologic Reservoirs, 2020, 32(2):169-176.
[20] 王鹏, 沈忠民, 何崇康, 等.川南地区须家河组天然气地球化学特征及成藏过程.岩性油气藏, 2017, 29(5):19-27 WANG P, SHEN Z M, HE C K, et al. Geochemical characteristics and accumulation process of natural gas of Xujiahe Formation in southern Sichuan Basin. Lithologic Reservoirs, 2017, 29(5):19-27.
[21] 李新豫, 张静, 包世海, 等.川中地区须二段气藏地震预测陷阱分析及对策:以龙女寺区块为例.岩性油气藏, 2019, 31(6):1-8. LI X Y, ZHANG J, BA S H, et al. Analysis and countermeasures of seismic prediction traps for Xujiahe gas reservoir in central Sichuan Basin:A case study from Longnyusi block. Lithologic Reservoirs, 2019, 31(6):1-8.
[22] 韩波, 何治亮, 任娜娜, 等.四川盆地东缘龙王庙组碳酸盐岩储层特征及主控因素.岩性油气藏, 2018, 30(1):75-85. HAN B, HE Z L, REN N N, et al. Characteristics and main controlling factors of carbonate reservoirs of Longwangmiao Formation in eastern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):75-85.
[23] 陈志强, 吴思源, 白蓉, 等.基于流动单元的致密砂岩气储层渗透率测井评价:以川中广安地区须家河组为例.岩性油气藏, 2017, 29(6):76-83. CHEN Z Q, WU S Y, BAI R, et al. Logging evaluation for permeability of tight sandstone gas reservoirs based on flow unit classification:A case from Xujiahe Formation in Guang'an area, central Sichuan Basin. Lithologic Reservoirs, 2017, 29(6):76-83.
[24] 王睿婧, 刘树根, 张贵生, 等.川西坳陷孝泉-新场-合兴场地区须二段天然气气源判定及成藏分析.岩性油气藏, 2011, 23(4):100-105. WANG R J, LIU S G, ZHANG G S, et al. Judgement of natural gas resource and accumulation analysis of the second member of Xujiahe Formation in Xiaoquan-Xinchang-Hexingchang area of West Sichuan depression. Lithologic Reservoirs, 2011, 23(4):100-105.
[25] BOURDET D. Well test analysis:The use of advanced interpretation models. Elsevier Science, 2020.
[26] AGARWAl R G. Real gas pseudo-time:A new function for pressure buildup analysis of MHF gas wells. SPE 8279, 1979.
[27] AL HUSSAINY R, RAMEY H J, CRAWFORD P B. The flow of real gases through porous media. SPE Journal, 1966, 18(5):624-6361
[28] VAN EVERDINGEN A F. The skin effect and its influence on the productive capacity of a well. Journal Petroleum Technology, 1943, 5(6):171-176.
[29] VAN EVERDINGEN A F, HURST W. The application of the Laplace transformation to flow problems in reservoirs. J. Pet. Technol., 1949, 1(12):305-324.
[30] 赖锦, 王贵文.川中蓬莱地区须二段气藏特征及有利含气区预测.岩性油气藏, 2012, 24(5):43-49. LAI J, WANG G W. Gas reservoir characteristics of the second member of Xujiahe Formation and prediction of favorable gas bearing zones in Penglai area, central Sichuan Basin. Lithologic Reservoirs, 2012, 24(5):43-49.
[31] 唐群英, 尹太举, 路遥, 等.川东北普光地区须家河组裂缝特征描述.岩性油气藏, 2012, 24(2):42-47. TANG Q Y, YIN T J, LU Y, et al. Fracture features description of Xujiahe Formation in Puguang area, northeastern Sichuan Basin. Lithologic Reservoirs, 2012, 24(2):42-47.
[32] 徐樟有, 宋丽, 吴欣松, 等.川中地区上三叠统须家河组典型气藏解剖与天然气成藏主控因素分析.岩性油气藏, 2009, 21(2):7-11. XU Z Y, SONG L, WU X S, et al. Typical gas reservoirs and main controlling factors of reservoir-forming of Upper Triassic Xujiahe Formation in central Sichuan Basin. Lithologic Reservoirs, 2009, 21(2):7-11.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Xiongqi,CHEN Dongxia, ZHANG Jun. Concept and categorize of subtle reservoir and problems in its application[J]. Lithologic Reservoirs, 2007, 19(1): 1 -8 .
[2] LEI Bianjun, ZHANG Ji,WANG Caili,WANG Xiaorong, LI Shilin, LIU Bin. Control of high r esolution sequence str atigr aphy on microfacies and reservoir s: A case from the upper Ma 5 member in Tong 5 wellblock, Jingbian Gas Field[J]. Lithologic Reservoirs, 2008, 20(1): 1 -7 .
[3] YANG Jie,WEI Pingsheng, LI Xiangbo. Basic concept, content and research method of petroleum seismogeology[J]. Lithologic Reservoirs, 2010, 22(1): 1 -6 .
[4] WANG Yan-qi1,HU Min-yi1,LIU Fu-yan1,WANG Hui1,HU Zhi-hua1,2. [J]. LITHOLOGIC RESERVOIRS, 2008, 20(3): 44 -48 .
[5] DAI Liming, LI Jianping, ZHOU Xinhuai, CUI Zhongguo, CHENG Jianchun. Depositional system of the Neogene shallow water delta in Bohai Sea area[J]. Lithologic Reservoirs, 2007, 19(4): 75 -81 .
[6] DUAN Youxiang, CAO Jing, SUN Qifeng. Application of auto-adaptive dip-steering technique to fault recognition[J]. Lithologic Reservoirs, 2017, 29(4): 101 -107 .
[7] HUANG Long, TIAN Jingchun, XIAO Ling, WANG Feng. Characteristics and evaluation of Chang 6 sandstone reservoir of Upper Triassic in Fuxian area, Ordos Basin[J]. Lithologic Reservoirs, 2008, 20(1): 83 -88 .
[8] YANG Shiwei, LI Jianming. Characteristics and geological significance of seismites[J]. Lithologic Reservoirs, 2008, 20(1): 89 -94 .
[9] LI Chuanliang, TU Xingwan. Two types of stress sensitivity mechanisms for reservoir rocks:Being favorable for oil recovery[J]. Lithologic Reservoirs, 2008, 20(1): 111 -113 .
[10] LI Jun, HUANG Zhilong, LI Jia, LIU Bo. The pool-forming pattern in the condition of arching in the southeast uplift in Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(1): 57 -61 .
TRENDMD: