Lithologic Reservoirs ›› 2016, Vol. 28 ›› Issue (1): 65-71.doi: 10.3969/j.issn.1673-8926.2016.01.008

Previous Articles     Next Articles

Sedimentary environment and reservoir characteristics during depositional stage of Es 3 in Gaobei ramp region

Yang Xiaoli 1,Dong Xuehua 2,Guo Aihua 1,Chen Qiyan 2,Wang Hailong 2   

  1.  1. Research Institute of Exploration and Development , PetroChina Jidong Oilfield Company , Tangshan 063004 , Hebei , China ; 2. PetroChina Research Institute of Petroleum Exploration & Development-Northwest , Lanzhou 730020 , China
  • Online:2016-01-20 Published:2016-01-20

Abstract:

  It is important for the prediction of effective reservoir distribution and analysis of reservoir characteristics to study the sedimentary environment of basin. Based on the study about petrology, sedimentary structure, palaeobiology, sedimentary sequence and electrofacies, the sedimentary environment of the third member of Shahejie Formation(Es3) in Gaobei ramp region of Jidong Oilfield was studied. It is revealed that the sedimentary environment of Es3 is fan delta-shallow lake facies. The evolutionary process is represent that lake was shrinking and fan delta was growing at Es33 period, lake was growing and fan delta was shrinking at Es32 period, and lake was shrink again, fan delta was growing again at Es31 period. There are two relatively independent sedimentary zones in the study area, which are caused by the uplift of central tectonic zone with NE trend in Gaoshangpu Oilfield. Meanwhile, the control role of sedimentary environment on reservoir development was discussed. It is considered that fan delta underwater distributary channel and mouth bar are the main lithosomic bodies for reservoir sand body. The distribution and development scale of reservoir sand body are controlled by the characters of fan delta development. The lithological changes on the horizontal and vertical are caused by the change of sedimentary environment. And it is the important cause of strong reservoir heterogeneity.

Key words: tight sandstone , micro pore features , diagenetic characteristics , the fifth member of Xujiahe Formation , Xinchang area , western Sichuan Depression

[1] ZHANG Xiaoli, WANG Xiaojuan, ZHANG Hang, CHEN Qin, GUAN Xu, ZHAO Zhengwang, WANG Changyong, TAN Yaojie. Reservoir characteristics and main controlling factors of Jurassic Shaximiao Formation in Wubaochang area,northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 87-98.
[2] CHEN Kang, DAI Juncheng, WEI Wei, LIU Weifang, YAN Yuanyuan, XI Cheng, LYU Yan, YANG Guangguang. Lithofacies classification of tight sandstone based on Bayesian Facies-AVO attributes:A case study of the first member of Jurassic Shaximiao Formation in central Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 111-121.
[3] SHAO Wei, ZHOU Daorong, LI Jianqing, ZHANG Chengcheng, LIU Tao. Key factors and favorable exploration directions for oil and gas enrichment in back margin sag of thrust nappe in Lower Yangtze [J]. Lithologic Reservoirs, 2024, 36(3): 61-71.
[4] WANG Xiaojuan, CHEN Shuangling, XIE Jirong, MA Hualing, ZHU Deyu, PANG Xiaoting, YANG Tian, LYU Xueying. Accumulation characteristics and main controlling factors of tight sandstone of Jurassic Shaximiao Formation in southwestern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(1): 78-87.
[5] BAI Jiajia, SI Shuanghu, TAO Lei, WANG Guoqing, WANG Longlong, SHI Wenyang, ZHANG Na, ZHU Qingjie. Mechanism of DES+CTAB composite oil displacement agent system to improve oil recovery of low-permeability tight sandstone reservoirs [J]. Lithologic Reservoirs, 2024, 36(1): 169-177.
[6] HUANG Yanqing, LIU Zhongqun, WANG Ai, XIAO Kaihua, LIN Tian, JIN Wujun. Types and distribution of tight sandstone gas sweet spots of the third member of Upper Triassic Xujiahe Formation in Yuanba area, Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(2): 21-30.
[7] YANG Kaile, HE Shenglin, YANG Zhaoqiang, WANG Meng, ZHANG Ruixue, REN Shuangpo, ZHAO Xiaobo, YAO Guangqing. Diagenesis characteristics of tight sandstone reservoirs with high temperature,overpressure and high CO2 content: A case study of Neogene Meishan-Huangliu Formation in LD10 area,Yinggehai Basin [J]. Lithologic Reservoirs, 2023, 35(1): 83-95.
[8] MI Weiwei, XIE Xiaofei, CAO Hongxia, MA Qiang, DU Yonghui, ZHANG Qiong, DENG Changsheng, SONG Jiaxuan. Characteristics and main controlling factors of tight sandstone reservoirs of Permian Shan 2 to He 8 members in southeastern Ordos Basin [J]. Lithologic Reservoirs, 2022, 34(6): 101-117.
[9] WANG Yongxiao, FU Siyi, ZHANG Chenggong, FAN Ping. Characteristics of tight sandstone reservoirs of the second member of Shanxi Formation in eastern Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(6): 12-20.
[10] ZHANG Yuye, GAO Jianwu, ZHAO Jingzhou, ZHANG Heng, WU Heyuan, HAN Zaihua, MAO Zhaorui, YANG Xiao. Diagenesis and pore evolution of Chang 6 tight sandstone reservoir in southeastern Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(6): 29-38.
[11] XU Ningning, WANG Yongshi, ZHANG Shoupeng, QIU Longwei, ZHANG Xiangjin, LIN Ru. Reservoir characteristics and diagenetic traps of the first member of Permian Xiashihezi Formation in Daniudi gas field,Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(4): 52-62.
[12] ZHANG Wenkai, SHI Zejin, TIAN Yaming, WANG Yong, HU Xiuquan, LI Wenjie. Pore types and genesis of tight sandstone of Silurian Xiaoheba Formation in southeastern Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(4): 10-19.
[13] LIU Huan, SU Qin, ZENG Huahui, MENG Huijie, ZHANG Xiaomei, YONG Yundong. Application of near-surface Q compensation technology in tight gas exploration in central Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(3): 104-112.
[14] GUO Yongwei, YAN Fangping, WANG Jing, CHU Huili, YANG Jianlei, CHEN Yingchao, ZHANG Xiaoyang. Characteristics of solid deposition and reservoir damage of CO2 flooding in tight sandstone reservoirs [J]. Lithologic Reservoirs, 2021, 33(3): 153-161.
[15] WEI Qinlian, CUI Gaixia, LIU Meirong, LYU Yujuan, GUO Wenjie. Reservoir characteristics and controlling factors of Permian lower He 8 member in southwestern Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(2): 17-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: