Lithologic Reservoirs ›› 2023, Vol. 35 ›› Issue (1): 83-95.doi: 10.12108/yxyqc.20230108

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Diagenesis characteristics of tight sandstone reservoirs with high temperature,overpressure and high CO2 content: A case study of Neogene Meishan-Huangliu Formation in LD10 area,Yinggehai Basin

YANG Kaile1,2, HE Shenglin1,2, YANG Zhaoqiang1,2, WANG Meng1,2, ZHANG Ruixue3, REN Shuangpo4,5, ZHAO Xiaobo4,5, YAO Guangqing4,5   

  1. 1. Zhanjiang Branch of CNOOC (China) Co., Ltd., Zhanjiang 524057, Guangdong, China;
    2. Hainan Branch of CNOOC (China) Co., Ltd., Haikou 570311, China;
    3. Jianghan Oil Production Plant, Sinopec Jianghan Oilfield Company, Qianjiang 433124, Hubei, China;
    4. Key Laboratory of Tectonics and Petroleum Resource, Ministry of Education, China University of Geosciences (Wuhan), Wuhan 430074, China;
    5. School of Earth Resources, China University of Geosciences (Wuhan), Wuhan 430074, China
  • Received:2021-10-25 Revised:2022-04-15 Online:2023-01-01 Published:2023-01-06

Abstract: By means of thin section identification,scanning electron microscopy,cathodoluminescence,and carbon and oxygen isotope analysis,the diagenesis characteristics and their influence on pores of Neogene MeishanHuangliu Formation under the background of high temperature,overpressure and high CO2 content in LD10 area of Yinggehai Basin were studied. The results show that: (1) The reservoirs of Neogene Meishan-Huangliu Formation in LD10 area of Yinggehai Basin are developed with gravity flow. The lithologies are mainly medium-fine feldspathic lithic quartz sandstones,and the reservoir physical properties are mainly characterized by ultra-low porosity and ultra-low permeability. (2) Compaction,cementation and dissolution are the main diagenesis types in the study area. Overpressure can obviously inhibit the transformation of clay minerals and the secondary enlargement of quartz,which can protect the primary pores to a certain extent. The high-temperature fluid rich in CO2 not only causes the abnormal transformation of clay minerals,but also promotes the dissolution to increase the secondary pores. (3) The diagenetic sequence of the second member of Huangliu Formation is summarized as siderite cementation→secondary enlargement of quartz→chlorite cementation→early stage feldspar dissolution→ kaolinite formation→early stage calcite cementation→early stage dolomite cementation→feldspar dissolution→ calcite dissolution→massive illite formation→late stage iron calcite and iron dolomite formation. (4) In general, compaction reduces the porosity by 45.30%-62.93%,and cementation reduces the porosity by 1.65%-35.01%, while dissolution increases the porosity by 0.72%-8.00%. The sandstone reservoir in the middle and lower part of Huangliu Formation is affected by overpressure and CO2 dissolution,with good physical properties,so high CO2 risk should be considered during drilling.

Key words: tight sandstone reservoir, high temperature-overpressure-high CO2 content, diagenetic evolution, Meishan-Huangliu Formation, Neogene, LD10 area, Yinggehai Basin

CLC Number: 

  • TE121.1
[1] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例[J]. 石油学报, 2012,33 (2): 173-187. ZOU Caineng,ZHU Rukai,WU Songtao,et al. Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica,2012,33 (2): 173-187.
[2] 操应长,葸克来,刘可禹,等. 陆相湖盆致密砂岩油气储层储集性能表征与成储机制: 以松辽盆地南部下白垩统泉头组四段为例[J]. 石油学报,2018,39 (3): 247-265. CAO Yingchang,XI Kelai,LIU Keyu,et al. Reservoir properties characterization and its genetic mechanism for tight sandstone oil and gas reservoir in lacustrine basin: The case of the fourth member of Lower Cretaceous Quantou Formation in the southern Songliao Basin[J]. Acta Petrolei Sinica,2018,39 (3): 247-265.
[3] 王永骁,付斯一,张成弓,等. 鄂尔多斯盆地东部山西组2 段致密砂岩储层特征[J]. 岩性油气藏,2021,33 (6): 12-20. WANG Yongxiao,FU Siyi,ZHANG Chenggong,et al. Characteristics of tight sandstone reservoirs of the second member of Shanxi Formation in eastern Ordos Basin[J]. Lithologic Reservoirs,2021,33 (6): 12-20.
[4] 杨计海,黄保家,陈殿远. 莺歌海盆地坳陷斜坡带低孔特低渗气藏形成条件及勘探潜力[J]. 中国海上油气,2018,30 (1): 11-21. YANG Jihai,HUANG Baojia,CHEN Dianyuan. Accumulation condition and exploration potential of low porosity and ultra-low permeability sandstone gas reservoirs on the depression slope belt of Yinggehai Basin[J]. China Offshore Oil and Gas,2018, 30 (1): 11-21.
[5] 陈杨,张建新,黄灿,等. 莺歌海盆地黄流组轴向重力流水道充填演化特征[J]. 东北石油大学学报,2019,43 (6): 23-32. CHEN Yang,ZHANG Jianxin,HUANG Can,et al. Filling evolution characteristics of the axial gravity channel in Huangliu Formation in Yinggehai Basin[J]. Journal of Northeast Petroleum University,2019,43 (6): 23-32.
[6] 陈杨,张道军,张建新,等. 莺歌海盆地莺东斜坡黄流组轴向重力流水道沉积特征及控制因素[J]. 东北石油大学学报, 2020,44 (2): 91-102. CHEN Yang,ZHANG Daojun,ZHANG Jianxin,et al. Sedimentary characteristics and controlling factors of the axial gravity channel in Huangliu Formation of the Yingdong slope area in Yinggehai Basin[J]. Northeast Petroleum University,2020,44 (2): 91-102.
[7] LI Xiaopeng,WANG Hua,YAO Guangqing,et al. Sedimentary features and filling process of the Miocene gravity-driven deposits in Ledong area,Yinggehai Basin,South China Sea[J]. Journal of Petroleum Science and Engineering,2022,209: 109886.
[8] JIANG Tao,CAO Licheng,XIE Xinong,et al. Insights from heavy minerals and zircon U-Pb ages into the middle MiocenePliocene provenance evolution of the Yinggehai Basin,northwestern South China Sea[J]. Sedimentary Geology,2015,327: 32-42.
[9] YAN Yi,CARTER A,PALK C,et al. Understanding sedimentation in the Song Hong-Yinggehai Basin,South China Sea[J]. Geochemistry Geophysics Geosystems,2011,12 (6): 1-15.
[10] 郝芳. 超压盆地生烃作用动力学与油气成藏机理[M]. 北京: 科学出版社,2005: 1-414. HAO Fang. Hydrocarbon generation kinetics and mechanism of hydrocarbon accumulation in overpressure basin[M]. Beijing: Science Press,2005: 1-414.
[11] 高煜婷. 莺歌海盆地成岩作用研究与孔隙演化[D]. 大庆: 东北石油大学,2011. GAO Yuting. Diagenesis research and pore evolution in Yinggehai Basin[D]. Daqing: Northeast Petroleum University,2011.
[12] 范彩伟,曹江骏,罗静兰,等. 异常高压下海相重力流致密砂岩非均质性特征及其影响因素: 以莺歌海盆地LD10区中新统黄流组储集层为例[J]. 石油勘探与开发,2021,48 (5): 903-915. FAN Caiwei,CAO Jiangjun,LUO Jinglan,et al. Heterogeneity characteristics and influencing factors of marine gravity flow tight sandstone under abnormal high pressure: a case study from the Miocene Huangliu Formation reservoir in LD10 area, Yinggehai Basin,South China Sea[J]. Petroleum Exploration and Development,2021,48 (5): 903-915.
[13] 姜平,何胜林,杨朝强,等. 莺歌海盆地LD10区高含CO2天 然气充注期次精细厘定与成藏模式[J]. 地球科学,2021,47 (5): 1569-1585. JIANG Ping,HE Shenglin,YANG Zhaoqiang,et al. High CO2 natural gas charging events,timing and accumulation pattern in LD10 area of Yinggehai Basin[J]. Earth Science,2021,47 (5): 1569-1585.
[14] 刘为,杨希冰,张秀苹,等. 莺歌海盆地东部黄流组重力流沉积特征及其控制因素[J]. 岩性油气藏,2019,31 (2): 75-82. LIU Wei,YANG Xibing,ZHANG Xiuping,et al. Characteristics and controlling factors of gravity flow deposits of Huangliu Formation in eastern Yinggehai Basin[J]. Lithologic Reservoirs,2019,31 (2): 75-82.
[15] GARZANTI E. From static to dynamic provenance analysis- Sedimentary petrology upgraded[J]. Sedimentary Geology,2016, 336: 3-13.
[16] GARZANTI E. Petrographic classification of sand and sandstone[J]. Earth-Science Reviews,2019,192: 545-563.
[17] 李超,罗晓容,范彩伟,等. 莺歌海盆地乐东斜坡区乐东A构造储层超压形成机制及其对天然气成藏的启示[J]. 地质科学,2021,56 (4): 1034-1051. LI Chao,LUO Xiaorong,FAN Caiwei,et al. Generation mechanism of overpressure and its implication for natural gas accumulation in Miocene reservoir in Ledong A structrure,Ledong slope,Yinggehai Basin[J]. Chinese Journal of Geology,2021, 56 (4): 1034-1051.
[18] YU Lei,WU Keqiang,LIU Li,et al. Dawsonite and ankerite formation in the LDX-1 structure,Yinggehai Basin,South China Sea: An analogy for carbon mineralization in subsurface sandstone aquifers[J]. Applied Geochemistry,2020,120: 104663.
[19] DUAN Wei,LI Chunfeng,LUO Chengfei,et al. Effect of formation overpressure on the reservoir diagenesis and its petroleum geological significance for the DF11 block of the Yinggehai Basin,the South China Sea[J]. Marine and Petroleum Geology,2018,97: 49-65.
[20] FU Meiyan,SONG Rongcai,XIE Yuhong,et al. Diagenesis and reservoir quality of overpressured deep-water sandstone following inorganic carbon dioxide accumulation: Upper Miocene Huangliu Formation,Yinggehai Basin,South China Sea[J]. Marine and Petroleum Geology,2016,77: 954-972.
[21] KEITH M L,WEBER J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta,1964,28 (10/11): 1787-1816.
[22] SHACKLETON N J. Attainment of isotopic equilibrium between ocean water and benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial[J]. Colloques International du Centre National Du Recherche Scientifique,1974,219 (3): 203-209.
[23] FRONVAL T,JENSEN N B,BUCHARDT B. Oxygen isotope disequilibrium precipitation of calcite in Lake Arreso,Denmark[J]. Geology,1995,23: 463-466.
[24] LIU Lihui,SUTO Y,BIGNALL G,et al. CO2 injection to granite and sandstone in experimental rock/hot water systems[J]. Energy Conversion and Management,2003,44 (9): 1399-1410.
[25] 任大忠,周兆华,梁睿翔,等. 致密砂岩气藏黏土矿物特征及其对储层性质的影响: 以鄂尔多斯盆地苏里格气田为例[J]. 岩性油气藏,2019,31 (4): 42-53. REN Dazhong,ZHOU Zhaohua,LIANG Ruixiang,et al. Characteristics of clay minerals and its impacts on reservoir quality of tight sandstone gas reservoir: A case from Sulige gas field, Ordos Basin[J]. Lithologic Reservoirs,2019,31 (4): 42-53.
[26] LONGSTAFFE F J. Clays and the resource geologist[M]. Calgary: Mineralogical Association of Canada,1981: 1-109.
[27] 王振峰,何家雄,解习农. 莺歌海盆地泥-流体底辟带热流体活动对天然气运聚成藏的控制作用[J]. 地球科学——中国地质大学学报,2004,29 (2): 203-210. WANG Zhenfeng,HE Jiaxiong,XIE Xinong. Heat flow action and its control on natural gas migration and accumulation in mud-fluid diapir areas in Yinggehai Basin[J]. Earth Science- Journal of China University of Geosciences,2004,29 (2): 203-210.
[28] 孟元林,黄文彪,王粤川,等. 超压背景下黏土矿物转化的化学动力学模型及应用[J]. 沉积学报,2006,24 (4): 461-467. MENG Yuanlin,HUANG Wenbiao,WANG Yuechuan,et al. A kinetic model of clay mineral transformation in overpressure setting and its applications[J]. Acta Sedimentologica Sinica, 2006,24 (4): 461-467.
[29] 孟元林,许丞,谢洪玉,等. 超压背景下自生石英形成的化学动力学模型[J]. 石油勘探与开发,2013,40 (6): 701-707. MENG Yuanlin,XU Cheng,XIE Hongyu,et al. A new kinetic model for authigenic quartz formation under overpressure[J]. Petroleum Exploration and Development,2013,40 (6): 701-707.
[30] 税蕾蕾,郭来源,徐新德,等. 莺歌海盆地乐东10区CO2包裹体特征及其流体充注史[J].石油实验地质,2021,43 (5): 835-843. SHUI Leilei,GUO Laiyuan,XU Xinde,et al. Fluid charging history in Ledong 10 area,Yinggehai Basin,revealed by CO2 inclusion characteristics[J]. Petroleum Geology & Experiment, 2021,43 (5): 835-843.
[31] 蒋恕,蔡东升,朱筱敏,等. 辽河坳陷辽中凹陷成岩作用与中深层孔隙演化[J]. 石油与天然气地质,2007,28 (3): 362-369. JIANG Shu,CAI Dongsheng,ZHU Xiaomin,et al. Diagenesis of Liaozhong sag in Liaohe depression and pore evolution in its middle-deep strata[J]. Oil & Gas Geology,2007,28 (3): 362-369.
[32] 金振奎,刘春慧. 黄骅坳陷北大港构造带储集层成岩作用定量研究[J]. 石油勘探与开发,2008,35 (5): 581-587. JIN Zhenkui,LIU Chunhui. Quantitative study on reservoir diagenesis in northern Dagang structural belt,Huanghua Depression[J]. Petroleum Exploration and Development,2008,35 (5): 581-587.
[33] 王瑞飞,孙卫. 储层沉积-成岩过程中物性演化的主控因素[J]. 矿物学报,2009,29 (3): 399-404. WANG Ruifei,SUN Wei. Main factors controlling the evolution of physical properties during the process of reservoir sedimentation-diagenesis[J]. Acta Mineralogica Sinica,2009,29 (3): 399-404.
[34] MARFIL R,SCHERER M,TURRERO M J. Diagenetic processes influencing porosity in sandstones from the Triassic Buntsandstein of the Iberian Range,Spain[J]. Sedimentary Geology, 1996,105 (3/4): 203-219.
[35] ISLAM M A. Diagenesis and reservoir quality of Bhuban sandstones (Neogene), Titas gas field,Bengal Basin,Bangladesh[J]. Journal of Asian Earth Sciences,2009,35 (1): 89-100.
[36] WOLELA A. Diagenetic evolution and reservoir potential of the Barremian-Cenomanian Debre Libanose Sandstone,Blue Nile (Abay) Basin,Ethiopia[J]. Cretaceous Research,2012,36: 83-95.
[37] 姜平,王珍珍,邹明生,等. 文昌A凹陷珠海组砂岩碳酸盐胶结物发育特征及其对储层质量的影响[J]. 地球科学,2021, 46 (2): 600-620. JIANG Ping,WANG Zhenzhen,ZOU Mingsheng,et al. Development characteristics of carbonate cement and its influence on reservoir quality in the sandstones from the Zhuhai Formation in the Wenchang A depression[J]. Earth Science,2021,46 (2): 600-620.
[38] BEARD D C,WELY P K. Influence of texture on porosity and permeability of unconsolidated sand[J]. AAPG Bulletin,1973, 57 (2): 349-369.
[39] 柳波,吕延防,赵荣,等. 三塘湖盆地马朗凹陷芦草沟组泥页岩系统地层超压与页岩油富集机理[J]. 石油勘探与开发, 2012,39 (6): 699-705. LIU Bo,LÜ Yanfang,ZHAO Rong,et al. Formation overpressure and shale oil enrichment in the shale system of Lucaogou Formation,Malang Sag,Santanghu Basin,NW China[J]. Petroleum Exploration and Development,2012,39 (6): 699-705.
[40] 胡作维,李云,黄思静,等. 砂岩储层中原生孔隙的破坏与保存机制研究进展[J]. 地球科学进展,2012,27 (1): 14-25. HU Zuowei,LI Yun,HUANG Sijing,et al. Reviews of the destruction and preservation of primary porosity in the sandstone reservoirs[J]. Advances in Earth Sciences,2012,27 (1): 14-25.
[41] 李伟,刘平,艾能平,等. 莺歌海盆地乐东地区中深层储层发育特征及成因机理[J]. 岩性油气藏,2020,32 (1): 19-26. LI Wei,LIU Ping,AI Nengping,et al. Development characteristics and genetic mechanism of med-deep reservoirs in Ledong area,Yinggehai Basin[J]. Lithologic Reservoirs,2020,32 (1): 19-26.
[42] 罗静兰,罗晓容,白玉彬,等. 差异性成岩演化过程对储层致密化时序与孔隙演化的影响: 以鄂尔多斯盆地西南部长7 致密浊积砂岩储层为例[J]. 地球科学与环境学报,2016,38 (1): 79-92. LUO Jinglan,LUO Xiaorong,BAI Yubin,et al. Impact of differential diagenetic evolution on the chronological tightening and pore evolution of tight sandstone reservoirs: A case study from the Chang-7 tight turbidite sandstone reservoir in the southwestern Ordos Basin[J]. Journal of Earth Sciences and Environment,2016,38 (1): 79-92.
[1] BAI Jiajia, SI Shuanghu, TAO Lei, WANG Guoqing, WANG Longlong, SHI Wenyang, ZHANG Na, ZHU Qingjie. Mechanism of DES+CTAB composite oil displacement agent system to improve oil recovery of low-permeability tight sandstone reservoirs [J]. Lithologic Reservoirs, 2024, 36(1): 169-177.
[2] XU Zhongbo, WANG Libing, SHEN Chunsheng, CHEN Mingyang, GAN Liqin. Architecture characterization of meandering river reservoirs of lower Ming huazhen Formation of Neogene in Penglai 19-3 oilfield,Bohai Sea [J]. Lithologic Reservoirs, 2023, 35(5): 100-107.
[3] YAO Xiutian, WANG Chao, YAN Sen, WANG Mingpeng, LI Wan. Reservoir sensitivity of Neogene Guantao Formation in Zhanhua Sag, Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(2): 159-168.
[4] FAN Caiwei, JIA Ru, LIU Bo, FU Xiaofei, HOU Jingxian, JIN Yejun. Caprock evaluation and its reservoir control of different accumulation systems in central depression zone of Yinggehai Basin [J]. Lithologic Reservoirs, 2023, 35(1): 36-48.
[5] LI Guoxin, SHI Yajun, ZHANG Yongshu, CHEN Yan, ZHANG Guoqing, LEI Tao. New progress and enlightenment of oil and gas exploration and geological understanding in Qaidam Basin [J]. Lithologic Reservoirs, 2022, 34(6): 1-18.
[6] REN Mengyi, HU Guangyi, FAN Tingen, FAN Hongjun. Composite sand body architecture and controlling factors of the lower Minghuazhen Formation of Neogene in northern Qinhuangdao 32-6 oilfield [J]. Lithologic Reservoirs, 2022, 34(6): 141-151.
[7] MA Kuiqian, LIU Dong, HUANG Qin. Physical simulation experiment of steam flooding in horizontal wells of Neogene heavy oil reservoir in Lvda oilfield,Bohai Sea [J]. Lithologic Reservoirs, 2022, 34(5): 152-161.
[8] ZHOU Donghong, TAN Huihuang, ZHANG Shengqiang. Seismic description technologies of Neogene composite channel sand bodies in Kenli 6-1 oilfield,Bohai Sea [J]. Lithologic Reservoirs, 2022, 34(4): 13-21.
[9] WANG Lifeng, SONG Ruiyou, CHEN Dianyuan, XU Tao, PAN Guangchao, HAN Guangming. Seismic identification and gas-bearing prediction of large-scale submarine fans of Neogene Huangliu Formation in D13 area of Yinggehai Basin [J]. Lithologic Reservoirs, 2022, 34(4): 42-52.
[10] LI Xiaohui, DU Xiaofeng, GUAN Dayong, WANG Zhiping, WANG Qiming. Sedimentary characteristics of braided-meandering transitional river of Neogene Guantao Formation in northeastern Liaodong Bay Depression [J]. Lithologic Reservoirs, 2022, 34(3): 93-103.
[11] YANG Shuisheng, WANG Huizhi, YAN Xiaolong, FU Guomin. Characteristics and indication of fluid inclusions of Jurassic Zhiluo Formation in south-central Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(6): 39-47.
[12] YANG Lisha, CHEN Bintao, MA Lun, SHI Zhongsheng, XUE Luo, WANG Lei, SHI Jianglong, ZHAO Yanjun. Element feature and coupling model of source-to-sink system in depression lacustrine basin: A case study of Neogene Jimidi Formation in Melut Basin, South Sudan [J]. Lithologic Reservoirs, 2021, 33(3): 27-38.
[13] FENG Dehao, LIU Chenglin, TIAN Jixian, TAI Wanxue, LI Pei, ZENG Xu, LU Zhendong, GUO Xuanhao. Basin modeling and favorable play prediction of Neogene in Yiliping area, Qaidam Basin [J]. Lithologic Reservoirs, 2021, 33(3): 74-84.
[14] LONG Shengfang, WANG Yushan, LI Guoliang, DUAN Chuanli, SHAO Yingming, HE Yongmei, CHEN Lingyun, JIAO Xu. Heterogeneity characteristics of tight reservoir of lower submember of He 8 member in Su 49 block,Sulige gas field [J]. Lithologic Reservoirs, 2021, 33(2): 59-69.
[15] GAO Jixian, SUN Wenju, WU Peng, DUAN Changjiang. Accumulation characteristics of Upper Paleozoic tight sandstone in Shenfu block,northeastern margin of Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(1): 121-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Xiongqi,CHEN Dongxia, ZHANG Jun. Concept and categorize of subtle reservoir and problems in its application[J]. Lithologic Reservoirs, 2007, 19(1): 1 -8 .
[2] LEI Bianjun, ZHANG Ji,WANG Caili,WANG Xiaorong, LI Shilin, LIU Bin. Control of high r esolution sequence str atigr aphy on microfacies and reservoir s: A case from the upper Ma 5 member in Tong 5 wellblock, Jingbian Gas Field[J]. Lithologic Reservoirs, 2008, 20(1): 1 -7 .
[3] YANG Jie,WEI Pingsheng, LI Xiangbo. Basic concept, content and research method of petroleum seismogeology[J]. Lithologic Reservoirs, 2010, 22(1): 1 -6 .
[4] WANG Yan-qi1,HU Min-yi1,LIU Fu-yan1,WANG Hui1,HU Zhi-hua1,2. [J]. LITHOLOGIC RESERVOIRS, 2008, 20(3): 44 -48 .
[5] DAI Liming, LI Jianping, ZHOU Xinhuai, CUI Zhongguo, CHENG Jianchun. Depositional system of the Neogene shallow water delta in Bohai Sea area[J]. Lithologic Reservoirs, 2007, 19(4): 75 -81 .
[6] DUAN Youxiang, CAO Jing, SUN Qifeng. Application of auto-adaptive dip-steering technique to fault recognition[J]. Lithologic Reservoirs, 2017, 29(4): 101 -107 .
[7] HUANG Long, TIAN Jingchun, XIAO Ling, WANG Feng. Characteristics and evaluation of Chang 6 sandstone reservoir of Upper Triassic in Fuxian area, Ordos Basin[J]. Lithologic Reservoirs, 2008, 20(1): 83 -88 .
[8] YANG Shiwei, LI Jianming. Characteristics and geological significance of seismites[J]. Lithologic Reservoirs, 2008, 20(1): 89 -94 .
[9] LI Chuanliang, TU Xingwan. Two types of stress sensitivity mechanisms for reservoir rocks:Being favorable for oil recovery[J]. Lithologic Reservoirs, 2008, 20(1): 111 -113 .
[10] LI Jun, HUANG Zhilong, LI Jia, LIU Bo. The pool-forming pattern in the condition of arching in the southeast uplift in Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(1): 57 -61 .
TRENDMD: