Lithologic Reservoirs ›› 2023, Vol. 35 ›› Issue (1): 36-48.doi: 10.12108/yxyqc.20230104

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Caprock evaluation and its reservoir control of different accumulation systems in central depression zone of Yinggehai Basin

FAN Caiwei1, JIA Ru2, LIU Bo2, FU Xiaofei2, HOU Jingxian1, JIN Yejun2   

  1. 1. Zhanjiang Branch of CNOOC (China) Co., Ltd., Zhanjiang 524057, Guangdong, China;
    2. Institute of Unconventional Oil & Gas, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
  • Received:2021-11-25 Revised:2022-03-20 Online:2023-01-01 Published:2023-01-06

Abstract: Yinggehai Basin is an important natural gas exploration area in the South China Sea. Based on detailed analysis of typical gas reservoirs and gas-bearing structures of different accumulation systems in the central depression of Yinggehai Basin,the effectiveness and controlling factors of caprocks were evaluated,and the controlling effects of caprocks on natural gas accumulation were analyzed. The results show that: (1) In the ultra-shallow and shallow accumulation systems in the central depression zone of Yinggehai Basin,the sealing of caprocks is controlled by the caprocks,the diapir structure and the faults associated with the activity of the diapir structure. In the middle-deep accumulation system,under the background of abnormally high fluid pressure and the absence of faults,hydraulic sealing of caprocks is the key factor controlling differential enrichment of oil and gas. (2) The critical juxtaposition thickness of the brittle caprocks to maintain the sealing effectiveness is 86-98 m in the ultrashallow and shallow accumulation systems. The effectiveness of the caprocks in the middle-deep accumulation system can be evaluated by the hydraulic fracturing pressure coefficient. When the value is greater than 1,it means that the caprocks have ruptured or have a strong risk of hydraulic fracturing. (3) From the overall view of the central depression,hydraulic fracturing induced by overpressure is the fundamental cause of sealing failure in mid-deep caprocks. Deep natural gas migrates to shallow layer through hydraulic fracturing channel and finally to the ultra-shallow reservoir through the faults. Therefore,under the condition of sufficient gas source,ultra-shallow and shallow gas reservoirs are mainly distributed at the top of the diapir,while middle-deep gas reservoirs are mainly concentrated in the diapir wing and slope areas.

Key words: caprock, overpressure, breakthrough pressure, fault, hydraulic fracturing, reservoir control, central depression zone, Yinggehai Basin

CLC Number: 

  • TE122.2
[1] HUNT J M. Generation and migration of petroleum from abnormal pressured fluid compartments[J]. AAPG Bulletin,1990,74 (1): 1-12.
[2] HAO Fang,ZOU Huayao,GONG Zaisheng,et al. Hierarchies of overpressure retardation of organic matter maturation: Case studies from petroleum basins in China[J]. AAPG Bulletin,2007, 91 (10): 1467-1498.
[3] BLOCH S,LANDER R H,BONNELL L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability[J]. AAPG Bulletin,2002,86 (2): 301-328.
[4] CAPUANO R M. Evidence of fluid flow in microfractures in geopressured shale[J]. AAPG Bulletin,1993,77 (9): 1303-1314.
[5] REVIL A,CATHLES L M. Fluid transport by solitary waves along growing faults: A field example from the Sourch Eugene Island Basin,Gulf of Mexico[J]. Earth and Planetary Science Letters,2002,202 (2): 321-335.
[6] 李传亮,朱苏阳,刘东华. 盖层封堵油气的机理研究[J]. 岩性油气藏,2019,31 (1): 12-19. LI Chuanliang,ZHU Suyang,LIU Donghua. Mechanism of sealing oil and gas with cap-rocks[J]. Lithologic Reservoirs,2019, 31 (1): 12-19.
[7] CAILLET G. The caprock of the Snorre Field,Norway: A possible leakage by hydraulic fracturing[J]. Marine and Petroleum Geology,1993,10 (1): 42-50.
[8] ANDERSON R N,HE W,HOBART M A,et al. Active fluid flow in the Eugene Island area,offshore Louisiana[J]. The Leading Edge,1991,10 (4): 12-17.
[9] 郝芳,刘建章,邹华耀,等. 莺歌海-琼东南盆地超压层系油气聚散机理浅析[J]. 地学前缘,2015,22 (1): 169-180. HAO Fang,LIU Jianzhang,ZOU Huayao,et al. Mechanisms of natural gas accumulation and leakage in the overpressured sequences in the Yinggehai and Qiongdongnan basins,offshore South China Sea[J]. Earth Science Frontiers,2015,22 (1): 169-180.
[10] COSGROVE J W. The expression of hydraulic fracturing in rocks and sediments[J]. Special Publications of Geological Society of London,1995,92 (1): 187-196.
[11] ZUHLSDOREF L,SPIESS V. Three-dimensional seismic characterization of a venting site reveals compelling indications of natural hydraulic fracturing[J]. Geology,2004,32 (2): 101-104.
[12] LACAZETTE A,ENGELDER T. Natural hydraulic fracturing[C]. Loen: Proceedings of the International Symposium on Rock Joints,1990: 35-44.
[13] 赵宝峰,陈红汉,孔令涛,等莺歌海盆地流体垂向输导体系及其对天然气成藏控制作用[J]. 地球科学——中国地质大学学报,2014,39 (9): 1323-1332. ZHAO Baofeng,CHEN Honghan,KONG Lingtao,et al. Vertical migration system and its control on natural gas accumulation in Yinggehai Basin[J]. Earth Science-Journal of China University of Geosciences,2014,39 (9): 1323-1332.
[14] 李伟,刘平,艾能平,等. 莺歌海盆地乐东地区中深层储层发育特征及成因机理[J]. 岩性油气藏,2020,32 (1): 19-26. LI Wei,LIU Ping,AI Nengping,et al. Development characteristics and genetic mechanism of mid-deep reservoirs in Ledong area, Yinggehai Basin[J]. Lithologic Reservoirs,2020,32 (1): 19-26.
[15] 谢玉洪. 莺歌海盆地高温高压盖层封盖能力定量评价[J]. 地球科学,2019,44 (8): 2579-2589. XIE Yuhong. Quantitative evaluation of sealing capacity of high temperature and pressure caprocks in Yinggehai Basin[J]. Earth Science,2019,44 (8): 2579-2589.
[16] 韩光明,周家雄,裴健翔,等. 莺歌海盆地底辟本质及其与天然气成藏关系[J]. 岩性油气藏,2012,24 (5): 27-31. HAN Guangming,ZHOU Jiaxiong,PEI Jianxiang,et al. Essence of diapir and its relationship with natural gas accumulation in Yinggehai Basin[J]. Lithologic Reservoirs,2012,24 (5): 27-31.
[17] 刘为,杨希冰,张秀苹,等. 莺歌海盆地东部黄流组重力流沉积特征及其控制因素[J]. 岩性油气藏,2019,31 (2): 75-82. LIU Wei,YANG Xibing,ZHANG Xiuping,et al. Characteristics and controlling factors of gravity flow deposits of Huangliu Formation in eastern Yinggehai Basin[J]. Lithologic Reservoirs,2019,31 (2): 75-82.
[18] 郝芳,邹华耀,黄保家. 莺歌海盆地天然气生成模式及其成藏流体响应[J]. 中国科学 (D辑),2002,32 (11): 889-895. HAO Fang,ZOU Huayao,HUANG Baojia. Natural gas generation model and reservoir-forming fluid response in Yinggehai Basin[J]. Science in China (Series D),2002,32 (11): 889-895.
[19] 马启富,陈斯忠,张启明,等. 超压盆地与油气分布[M]. 北京: 地质出版社,2000. MA Qifu,CHEN Sizhong,ZHANG Qiming,et al. Overpressure basins and oil and gas distribution[M]. Beijing: Geological Publishing House,2000.
[20] 殷秀兰,李思田,杨计海. 底辟区构造分析及热流体运移模拟: 以莺歌海盆地DF1-1为例[J]. 地学前缘,2000,7 (3): 81-89. YIN Xiulan,LI Sitian,YANG Jihai. Study on fault system and simulation of driving fluid migration in DF1-1 diapir,Yinggehai Basin,South China Sea[J]. Earth Science Frontiers,2000,7 (3): 81-89.
[21] 童传新,王振峰,李绪深. 莺歌海盆地东方1-1气田成藏条件及其启示[J].天然气工业,2012,32 (8): 11-26. TONG Chuanxin,WANG Zhenfeng,LI Xushen. Accumulation conditions and enlightenment of DF 1-1 gas field in Yinggehai Basin[J]. Natural Gas Industry,2012,32 (8): 11-26.
[22] 贾茹. 莺琼盆地盖层完整性及与天然气成藏[D]. 大庆: 东北石油大学,2018. JIA Ru. The integrity of caprocks and gas accumulation in Yingqiong Basin[D]. Daqing: Northeast Petroleum University,2018.
[23] 付广,庞雄奇. 利用声波时差资料研究泥岩盖层封闭能力的方法[J]. 石油地球物理勘探,1996,31 (4): 521-529. FU Guang,PANG Xiongqi. Method for researching on mudcaprock sealing ability with the use of interval transit times[J]. Oil Geophysical Prospecting,1996,31 (4): 521-529.
[24] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏,2008,20 (1): 21-26. FU Guang,LIU Bo,LÜ Yanfang. Comprehensive evaluation method for sealing ability of mudstone caprock to gas in each phase[J]. Lithologic Reservoirs,2008,20 (1): 21-26.
[25] 冯冲,黄志龙,童传新,等. 莺歌海盆地莺歌海组二段泥岩盖层封闭性综合评价[J]. 地球科学与环境学报,2011,33 (4): 373-377. FENG Chong,HUANG Zhilong,TONG Chuanxin,et al. Comprehensive evaluation on the sealing ability of mudstone cap rock in member 2 of Yinggehai Formation of Yinggehai Basin[J]. Journal of Earth Science and Environment,2011,33 (4): 373-377.
[26] 汪洋,裴健翔,刘亿. 莺歌海盆地东方区高温超压气藏盖层封盖机制[J]. 华南地质与矿产,2016,32 (4): 397-405. WANG Yang,PEI Jianxiang,LIU Yi. Caprock sealing mechanism of high-temperature and overpressure gas reservoirs in the Dongfang block,Yinggehai Basin,South China[J]. Geology and Mineral Resources of South China,2016,32 (4): 397-405.
[27] JAEGER J C. Extension failures in rocks subject to fluid pressure[J]. Journal of Geophysical Research,1963,68 (21): 6066-6067.
[28] MAGARA K. Reevaluation of montmorillonite dehydration as cause of abnormal pressure and hydrocarbon migration[J]. AAPG Bulletin,1975,59 (2): 292-302.
[29] SIBSON R H. Structural permeability of fluid-driven fault-fracture meshes[J]. Journal of Structural Geology,1996,18 (8): 1031-1042.
[30] MILDREN S D,HILLIS R R,DEWHURST D N,et al. FAST: A new technique for geomechanical assessment of the risk of reactivation-related breach of fault seals[J]. AAPG Hedberg Series,2005 (2): 73-85.
[31] 付晓飞,吴桐,吕延防,等. 油气藏盖层封闭性研究现状及未来发展趋势[J]. 石油与天然气地质,2018,39 (3): 454-471. FU Xiaofei,WU Tong,LÜ Yanfang,et al. Research status and development trend of the reservoir caprock sealing properties[J]. Oil & Gas Geology,2018,39 (3): 454-471.
[32] 付晓飞,贾茹,王海学,等. 断层-盖层封闭性定量评价: 以塔里木盆地库车坳陷大北-克拉苏构造带为例[J]. 石油勘探与开发,2015,42 (3): 300-309. FU Xiaofei,JIA Ru,WANG Haixue,et al. Quantitative evaluation of fault-caprock sealing capacity: A case from Dabei-Kelasu structural belt in Kuqa Derpession,Tarim Basin,NW China[J]. Petroleum Exploration and Development,2015,42 (3): 300-309.
[33] 吕延防,万军,沙子萱,等. 被断裂破坏的盖层封闭能力评价方法及其应用[J]. 地质科学,2008,43 (1): 162-174. LÜ Yanfang,WAN Jun,SHA Zixuan,et al. Evaluation method for seal ability of cap rock destructed by faulting and its application[J]. Chinese Journal of Geology,2008,43 (1): 162-174.
[34] 范彩伟. 莺-琼盆地高压成因输导体系特征、识别及其成藏过程[J]. 石油与天然气地质,2018,39 (2): 254-267. FAN Caiwei. The identification and characteristics of migration system induced by high pressure,and its hydrocarbon accumulation process in the Yingqiong Basin[J]. Oil & Gas Geology, 2018,39 (2): 254-267.
[35] JIA Ru,FAN Caiwei,LIU Bo,et al. Analysis of natural hydraulic fracture risk of mudstone cap rocks in XD block of central depression in Yinggehai Basin,South China Sea[J]. Energies, 2021,14 (14): 1-12.
[36] PHILLIPS W J. Hydraulic fracturing and mineralization[J]. Journal of the Geological Society,1972,128 (4): 337-359.
[37] ZOBACK M D,Barton C A,BRUDY M,et al. Determination of stress orientation and magnitude in deep wells[J]. International Journal of Rock Mechanics and Mining Sciences,2003, 40 (7/8): 1049-1076.
[38] TINGAY M R,HILLI R R,MORLEY C K,et al. Present-day stress and neotectonics of Brunei: Implications for petroleum exploration and production[J]. AAPG Bulletin,2009,93 (1): 75-100.
[39] MCGARR A,Gay N C. State of stress in the earth's crust[J]. Annual Review of Earth and Planetary Sciences,1978,6: 405.
[40] HUBBERT M K,WILLIS D G. Mechanics of hydraulic fracturing[J]. Transactions of Society of Petroleum Engineers of AIME, 1957,210: 153-168.
[41] GAARENSTROOM L,TROMP R A J,BRANDENBURG A M. Overpressures in the Central North Sea: Implications for trap integrity and drilling safety[R]. Petroleum Geology Conference Series,Geological Society of London,1993.
[1] Guan Yunwen, Su Siyu, Pu Renhai, Wang Qichao, Yan Sujie, Zhang Zhongpei, Chen Shuo, Liang Dongge. Palaeozoic gas reservoir-forming conditions and main controlling factors in Xunyi area,southern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(6): 77-88.
[2] QU Weihua, TIAN Ye, DONG Changchun, GUO Xiaobo, LI Lili, LIN Siya, XUE Song, YANG Shihe. Characteristics of Cretaceous source rocks and their controlling effect on hydrocarbon accumulation in Dehui Fault Depression,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(6): 122-134.
[3] YAN Xueying, SANG Qin, JIANG Yuqiang, FANG Rui, ZHOU Yadong, LIU Xue, LI Shun, YUAN Yongliang. Main controlling factors for the high yield of tight oil in the Jurassic Da’anzhai Section in the western area of Gongshanmiao, Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(6): 98-109.
[4] SU Hao, GUO Yandong, CAO Liying, YU Chen, CUI Shuyue, LU Ting, ZHANG Yun, LI Junchao. Natural depletion characteristics and pressure maintenance strategies of faultcontrolled fracture-cavity condensate gas reservoirs in Shunbei Oilfield [J]. Lithologic Reservoirs, 2024, 36(5): 178-188.
[5] WEI Chenglin, ZHANG Fengqi, JIANG Qingchun, LU Xuesong, LIU Gang, WEI Yanzhao, LI Shubo, JIANG Wenlong. Formation mechanism and evolution characteristics of overpressure in deep Permian in eastern Fukang Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(5): 167-177.
[6] QIU Yuchao, LI Yading, WEN Long, LUO Bing, YAO Jun, XU Qiang, WEN Huaguo, TAN Xiucheng. Structural characteristics and hydrocarbon accumulation model of Cambrian Xixiangchi Formation in eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 122-132.
[7] YANG Xuefeng, ZHAO Shengxian, LIU Yong, LIU Shaojun, XIA Ziqiang, XU Fei, FAN Cunhui, LI Yutong. Main controlling factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Ningxi area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 99-110.
[8] YAN Jianping, LAI Siyu, GUO Wei, SHI Xuewen, LIAO Maojie, TANG Hongming, HU Qinhong, HUANG Yi. Research progress on casing deformation types and influencing factors in geological engineering of shale gas wells [J]. Lithologic Reservoirs, 2024, 36(5): 1-14.
[9] WANG Hongxing, HAN Shiwen, HU Jia, PAN Zhihao. Prediction and main controlling factors of tuff reservoirs of Cretaceous Huoshiling Formation in Dehui fault depression,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(5): 35-45.
[10] HUANG Xiangsheng, YAN Zhuoyu, ZHANG Dongfeng, HUANG Heting, LUO Chengfei. Characteristics of multi-phase thermal fluid activity and natural gas migration-accumulation of Cenozoic in No. 2 fault zone of Qiongdongnan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 67-76.
[11] ZHANG Lei, LI Sha, LUO Bobo, LYU Boqiang, XIE Min, CHEN Xinping, CHEN Dongxia, DENG Caiyun. Accumulation mechanism of overpressured lithologic reservoirs of the third member of Paleogene Shahejie Formation in northern Dongpu Sag [J]. Lithologic Reservoirs, 2024, 36(4): 57-70.
[12] TIAN Ya, LI Junhui, CHEN Fangju, LI Yue, LIU Huaye, ZOU Yue, ZHANG Xiaoyang. Tight reservoir characteristics and favorable areas prediction of Lower Cretaceous Nantun Formation in central fault depression zone of Hailar Basin [J]. Lithologic Reservoirs, 2024, 36(4): 136-146.
[13] LU Keliang, WU Kangjun, LI Zhijun, SUN Yonghe, XU Shaohua, LIANG Feng, LIU Lu, LI Shuang. Characteristics and evolution model of hydrocarbon accumulation of Cambrian Longwangmiao Formation in the north slope of central Sichuan paleo-uplift [J]. Lithologic Reservoirs, 2024, 36(4): 159-168.
[14] TANG Shukai, GUO Tiankui, WANG Haiyang, CHEN Ming. Numerical simulation of fracture propagation law of in-fracture temporary plugging and diverting fracturing in tight reservoirs [J]. Lithologic Reservoirs, 2024, 36(4): 169-177.
[15] XU Tianlu, WU Chengmei, ZHANG Jinfeng, CAO Aiqiong, ZHANG Teng. Natural fracture characteristics and fracture network simulation in shale reservoirs of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2024, 36(4): 35-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[2] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3): 159 -164 .
[3] LI Yun, SHI Zhiqiang. Study on fluid inclusion of tight sandstone reservoir of Upper Triassic Xujiahe Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27 -32 .
[4] JIANG Ren, FAN Tailiang, XU Shouli. Concept and techniques of seismic geomorphology[J]. Lithologic Reservoirs, 2008, 20(1): 33 -38 .
[5] ZOU Mingliang, HUANG Sijing, HU Zuowei, FENG Wenli, LIU Haoniannian. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag, East China Sea[J]. Lithologic Reservoirs, 2008, 20(1): 47 -52 .
[6] WANG Bingjie, HE Sheng, NI June, FANG Du. Activity analysis of main faults in Qianquan area, Banqiao Sag[J]. Lithologic Reservoirs, 2008, 20(1): 75 -82 .
[7] CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, LING Husong, SUN Baodian. Using NMR T2 spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1): 105 -110 .
[8] ZHANG Houfu, XU Zhaohui. Discussion on stratigraphic-lithologic reservoirs exploration in the aspect of the research history of reservoirs[J]. Lithologic Reservoirs, 2008, 20(1): 114 -123 .
[9] ZHANG Xia. Cultivation of exploration creativity[J]. Lithologic Reservoirs, 2007, 19(1): 16 -20 .
[10] YANG Wuyang, YANG Wencai, LIU Quanxin, WANG Xiwen. 3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations[J]. Lithologic Reservoirs, 2007, 19(1): 86 -91 .
TRENDMD: