Lithologic Reservoirs ›› 2024, Vol. 36 ›› Issue (5): 178-188.doi: 10.12108/yxyqc.20240517

• PETROLEUM ENGINEERING AND OIL & GAS FIELD DEVELOPMENT • Previous Articles    

Natural depletion characteristics and pressure maintenance strategies of faultcontrolled fracture-cavity condensate gas reservoirs in Shunbei Oilfield

SU Hao1, GUO Yandong1, CAO Liying1, YU Chen1, CUI Shuyue1, LU Ting1, ZHANG Yun2, LI Junchao3   

  1. 1. Sinopec Research Institute of Petroleum Exploration and Production, Beijing 100083, China;
    2. Research Institute of Exploration and Production, Sinopec Northwest Oilfield Company, Urumqi 830011, Xinjiang, China;
    3. College of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710065, China
  • Received:2023-04-03 Revised:2023-06-18 Online:2024-09-01 Published:2024-09-04

Abstract: The fault-controlled fracture-cavity condensate gas reservoirs in Shunbei Oilfield have special geological conditions and are difficult to develop. Based on the actual parameters of the gas reservoirs in Shunbei Oilfield,a quantitative analysis method integrated modeling and simulation was used to characterize the natural depletion of fault-controlled fracture-cavity condensate gas reservoirs,and corresponding pressure maintenance strategies were formulated. The results show that:(1)A hierarchical modeling method based on geophysical attribute depiction was adopted for different types of facies to obtain a fused three-dimensional reservoir facies model. Based on the data of wave impedance,logging data,and well testing interpretation,a three-dimensional porosity model and permeability model was obtained by using human-computer interaction and gradual nesting method. On this basis of two models,combined the fluid model obtained from PVT experiments,a multi-component numerical simulation model representing the characteristics of the fault-controlled fracture-cavity condensate gas reservoirs in the region can be obtained.(2)Retrograde condensation and stress sensitivity are two major factors that constrain the natural depletion development effect of such condensate gas reservoirs. The retrograde condensation shortens the stable production time of oil,increases the gas oil ratio,and reduces cumulative oil production. Fractures in reservoirs with stress sensitivity may close under certain stress conditions,resulting in the difficulty to produce some reserves connected to the fractures.(3)CH4 is the optimal injection medium for pressure maintenance development,and the best injection effect occurs when it is injected slightly above the dew point pressure. Injection-production rate and injection time are positively correlated with the oil production increment,but the oil replacement rate decreases as the injection volume increases. For the injection-production well group,the scheme which adopts continuous injection and production mode first and then switch to pulse injection and continuous production mode is the best strategy for increasing oil production while preventing gas channeling. For the isolated well,the huff and puff injection and production method can be used to improve the condensate oil recovery. Further,both the injection and production wells are deployed in a cave,which is easier to make the injected gas act on the main reserves in the cave and drive out the main reserves in a directional way. Meanwhile,ensuring sufficient distance between injection and production wells is beneficial for preventing gas channeling and increasing the swept volume.

Key words: numerical model, natural depletion, retrograde condensation, stress sensitivity, pressure maintenance development, development strategy, enhanced oil recovery, condensate gas reservoir, fault-controlled fracture-cavity reservoir, Shunbei Oilfield

CLC Number: 

  • TE319
[1] 倪新锋, 沈安江, 乔占峰, 等. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2):144-158. NI Xinfeng, SHEN Anjiang, QIAO Zhanfeng, et al. Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin[J]. Lithologic Reservoirs, 2023, 35(2):144-158.
[2] 马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1):1-17. MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1):1-17.
[3] 卜旭强, 王来源, 朱莲花, 等. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3):152-160. BU Xuqiang, WANG Laiyuan, ZHU Lianhua, et al. Characteristics and reservoir accumulation model of Ordovician fault-controlled fractured-vuggy reservoirs in Shunbei oil and gas field, Tarim Basin[J]. Lithologic Reservoirs, 2023, 35(3):152-160.
[4] 云露, 邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征:以顺北油气田为例[J]. 石油学报, 2022, 43(6):770-787. YUN Lu, DENG Shang. Structural styles of deep strike-slip faults in Tarim Basin and the characteristics of their control on reservoir formation and hydrocarbon accumulation:A case study of Shunbei oil and gas field[J]. Acta Petrolei Sinica, 2022, 43(6):770-787.
[5] 彭军, 夏梦, 曹飞, 等. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏, 2022, 34(2):17-30. PENG Jun, XIA Meng, CAO Fei, et al. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area, Tarim Basin[J]. Lithologic Reservoirs, 2022, 34(2):17-30.
[6] BAKER R O, TELESFORD A, WONG S, et al. An integrated fracture characterization of a heavy oil naturally fractured carbonate reservoir[R]. Calgary, Alberta:Canadian International Petroleum Conference, 2001.
[7] JEAN-HECTOR De G, ZOORMAND G H, MOHAMMAD G, et al. A case study on redevelopment of a giant highly fractured carbonate reservoir in Iran based on integrated reservoir characterization and 3 D modeling studies[R]. SPE 93760, 2005.
[8] LUIS G, ANTONIO C S, VICTOR A, et al. Integrated reservoir characteristic of a fractured carbonate reservoir[R]. SPE 58995, 2000.
[9] QADIR S, HAQUE A, AHMED N, et al, Comparison of different enhanced oil recovery techniques for better oil productivity[J]. International Journal of Applied Science and Technology, 2011, 1(5):143-153.
[10] 包友书, 王永诗, 李政, 等. 济阳坳陷深层沙河街组四段轻质油-凝析气成藏条件[J]. 石油学报, 2021, 42(12):1615-1624. BAO Shuyou, WANG Yongshi, LI Zheng, et al. Accumulation conditions for deep light oil and condensate gas from member 4 of Shahejie Formation in Jiyang Depression[J]. Acta Petrolei Sinica, 2021, 42(12):1615-1624.
[11] 徐长贵, 于海波, 王军, 等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发, 2019, 46(1):25-38. XU Changgui, YU Haibo, WANG Jun, et al. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin[J]. Petroleum Exploration and Development, 2019, 46(1):25-38.
[12] 江同文, 孙龙德, 谢伟, 等. 凝析气藏循环注气三元开发机理与提高凝析油采收率新技术[J]. 石油学报, 2021, 42(12):1654-1664. JIANG Tongwen, SUN Longde, XIE Wei, et al. Three-element development mechanism of cyclic gas injection in condensate gas reservoirs and a new technique of enhancing condensate oil recovery[J]. Acta Petrolei Sinica, 2021, 42(12):1654-1664.
[13] 胡永乐, 李保柱, 孙志道. 凝析气藏开采方式的选择[J]. 天然气地球科学, 2003, 14(5):398-401. HU Yongle, LI Baozhu, SUN Zhidao. Choice of development methods of gas condensate reservoirs[J]. Natural Gas Geoscience, 2003, 14(5):398-401.
[14] 王素英, 张翔, 田景春, 等. 塔里木盆地顺北地区柯坪塔格组沉积演化及沉积分异模式[J]. 岩性油气藏, 2021, 33(5):81-94. WANG Suying, ZHANG Xiang, TIAN Jingchun, et al. Sedimentary evolution and sedimentary differentiation model of Kepingtage Formation in Shunbei area, Tarim Basin[J]. Lithologic Reservoirs, 2021, 33(5):81-94.
[15] 李爱芬, 范新昊, 高占武, 等. 缝洞型凝析气藏衰竭开采影响因素实验[J]. 特种油气藏, 2022, 29(4):96-100. LI Aifeng, FAN Xinhao, GAO Zhanwu, et al. Experiment on influencing factors of natural depletion of fractured-vuggy condensate gas reservoirs[J]. Special Oil & Gas Reservoirs, 2022, 29(4):96-100.
[16] 徐壮, 石万忠, 王任, 等. 塔北隆起西部地区白垩系碎屑岩油气成藏规律及成藏模式[J]. 岩性油气藏, 2023, 35(2):31-46. XU Zhuang, SHI Wanzhong, WANG Ren, et al. Hydrocarbon accumulation law and model of Cretaceous clastic rocks in western Tabei uplift[J]. Lithologic Reservoirs, 2023, 35(2):31-46.
[17] 邓兴梁, 郭平, 蒋光迹. 裂缝-孔洞型凝析气藏不同开发方式的长岩心实验[J]. 天然气工业, 2011, 31(6):60-62. DENG Xingliang, GUO Ping, JIANG Guangji. A long-core experimental study of different development schemes on fractured cavernous gas condensate reservoirs[J]. Natural Gas Industry, 2011, 31(6):60-62.
[18] 李冬梅, 李会会, 朱苏阳, 等. 断溶体油气藏流动物质平衡方法[J]. 岩性油气藏, 2022, 34(1):154-162. LI Dongmei, LI Huihui, ZHU Suyang, et al. Modified flowing material balance method for fault-karst reservoirs[J]. Lithologic Reservoirs, 2022, 34(1):154-162.
[19] 郭平, 涂汉敏, 汪周华, 等. 关于凝析气藏开采速度的讨论[J]. 科学技术与工程, 2016, 16(31):31-35. GUO Ping, TU Hanmin, WANG Zhouhua, et al. Discussion about the exploitation rate of gas condensate reservoirs[J]. Science Technology and Engineering, 2016, 16(31):31-35.
[20] 肖阳, 康博, 邓兴梁, 等. 缝洞型碳酸盐岩凝析气藏不同开发方式全直径物理模拟研究[J]. 新疆石油天然气, 2012, 8(1):58-61. XIAO Yang, KANG Bo, LIANG Xingliang, et al. The physical simulation research of full diameter core for different development way of fractured-vuggy carbonate gas condensate reservoir[J]. Xinjiang Oil & Gas, 2012, 8(1):58-61.
[21] 张雄, 王晓之, 郭天魁, 等. 顺北油田缝内转向压裂暂堵剂评价实验[J]. 岩性油气藏, 2020, 32(5):170-176. ZHANG Xiong, WANG Xiaozhi, GUO Tiankui, et al. Experiment on evaluation of temporary plugging agent for in-fracture steering fracturing in Shunbei oilfield[J]. Lithologic Reservoirs, 2020, 32(5):170-176.
[22] 刘宝增, 漆立新, 李宗杰, 等. 顺北地区超深层断溶体储层空间雕刻及量化描述技术[J]. 石油学报, 2020, 41(4):412-420. LIU Baozeng, QI Lixin, LI Zongjie, et al. Spatial characterization and quantitative description technology for ultra-deep faultkarst reservoirs in the Shunbei area[J]. Acta Petrolei Sinica, 2020, 41(4):412-420.
[23] 黄磊, 康凯, 张雷, 等. 凝析气藏PVT实验数据合格性的判别方法[J]. 断块油气田, 2022, 29(3):390-394. HUANG Lei, KANG Kai, ZHANG Lei, et al. Distinguishing method for conformity of PVT data for condensate gas reservoirs[J]. Fault-Block Oil & Gas Field, 2022, 29(3):390-394.
[24] 史林祥. 凝析气藏相态特征及其开发规律研究[D]. 北京:中国地质大学(北京), 2019. SHI Linxiang. Study on phase characteristics and development law of condensate gas reservoir[D]. Beijing:China University of Geosciences(Beijing), 2019.
[25] 杨春. 对应力敏感的缝洞型岩石压缩系数的探讨[J]. 钻采工艺, 2020, 43(6):41-43. YANG Chun. Calculation equation of fractured-vuggy rock compressibility considering stress sensitivity[J]. Drilling & Production Technology, 2020, 43(6):41-43.
[26] 张艺晓, 李小波, 尚根华, 等. 断溶体油藏应力敏感特征研究[J]. 油气藏评价与开发, 2023, 13(1):127-134. ZHANG Yixiao, LI Xiaobo, SHANG Genhua, et al. Stress sensitive characteristics of fault-karst reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1):127-134.
[27] 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4):150-158. SONG Chuanzhen, MA Cuiyu. Oil-water flow law of Ordovician fractured-vuggy reservoirs in Tahe Oilfield[J]. Lithologic Reservoirs, 2022, 34(4):150-158.
[28] 焦玉卫, 李保柱, 王博, 等. 凝析气藏循环注气驱替机理研究[J]. 新疆石油天然气, 2010, 6(4):63-66. JIAO Yuwei, LI Baozhu, WANG Bo, et al. Research on mechanisms of cycling reinjection in gas condensate reservoir[J]. Xinjiang Oil & Gas, 2010, 6(4):63-66.
[1] WANG Yifeng, TIAN Jixian, LI Jian, QIAO Tong, LIU Chenglin, ZHANG Jingkun, SHA Wei, SHEN Xiaoshuang. Geochemical characteristics of Permian condensate oil and gas and phase types in southwest of Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 149-159.
[2] QIAO Tong, LIU Chenglin, YANG Haibo, WANG Yifeng, LI Jian, TIAN Jixian, HAN Yang, ZHANG Jingkun. Characteristics and genetic mechanism of condensate oil and gas of the Jurassic Sangonghe Formation in western well Pen-1 sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 169-180.
[3] TANG Shukai, GUO Tiankui, WANG Haiyang, CHEN Ming. Numerical simulation of fracture propagation law of in-fracture temporary plugging and diverting fracturing in tight reservoirs [J]. Lithologic Reservoirs, 2024, 36(4): 169-177.
[4] BIAN Baoli, LIU Hailei, JIANG Wenlong, WANG Xueyong, DING Xiujian. Discovery and exploration enlightenment of Carboniferous volcanic condensate gas reservoirs in western well Pen-1 sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(3): 96-105.
[5] BAI Jiajia, SI Shuanghu, TAO Lei, WANG Guoqing, WANG Longlong, SHI Wenyang, ZHANG Na, ZHU Qingjie. Mechanism of DES+CTAB composite oil displacement agent system to improve oil recovery of low-permeability tight sandstone reservoirs [J]. Lithologic Reservoirs, 2024, 36(1): 169-177.
[6] WANG Jinduo, ZENG Zhiping, XU Bingbing, LI Chao, LIU Dezhi, FAN Jie, LI Songtao, ZHANG Zengbao. Fluid phase and hydrocarbon reservoir types of Permian Upper Urho Formation in Shawan Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(1): 23-31.
[7] ZHANG Xiong, WANG Xiaozhi, GUO Tiankui, ZHAO Haiyang, LI Zhaomin, YANG Bin, QU Zhanqing. Experiment on evaluation of temporary plugging agent for in-fracture steering fracturing in Shunbei oilfield [J]. Lithologic Reservoirs, 2020, 32(5): 170-176.
[8] HUANG Guangqing. Influence of ion composition and salinity on recovery of water flooding with low salinity [J]. Lithologic Reservoirs, 2019, 31(5): 129-133.
[9] JIANG Ruizhong, ZHANG Fulei, CUI Yongzheng, PAN Hong, ZHANG Xu, ZHANG Chunguang, SHEN Zeyang. Pressure dynamic analysis of shale gas reservoirs considering stress sensitivity and complex migration [J]. Lithologic Reservoirs, 2019, 31(4): 149-156.
[10] JI Jinghao, XI Jiahui, ZENG Fenghuang, YANG Qigui. Unsteady productivity model of segmented multi-cluster fractured horizontal wells in tight oil reservoir [J]. Lithologic Reservoirs, 2019, 31(4): 157-164.
[11] HAN Peihui, YAN Kun, CAO Ruibo, GAO Shuling, TONG Hui. Oil displacement methods for enhanced oil recovery after polymer flooding [J]. Lithologic Reservoirs, 2019, 31(2): 143-150.
[12] YANG Zhe, LIU Wei, HU Ziduo, WANG Shujiang, HAN Linghe, WANG Yanxiang. Mixed-grid finite-difference methods for wave equation numerical modeling in time-space domain [J]. Lithologic Reservoirs, 2018, 30(2): 93-109.
[13] LI Youquan, HAN Xiuhong, YAN Yan, ZHANG Dezhi, ZHOU Zhiwei, MENG Fankun. Pressure transient analysis on CO2 huff and puff in low permeability reservoir [J]. Lithologic Reservoirs, 2017, 29(6): 119-127.
[14] WANG Xiaotong, XIANG Longbin, ZHANG Yixin. Microorganism preparation and application evaluation on microbial enhanced high-pour point oil recovery in Liaohe Oilfield [J]. Lithologic Reservoirs, 2017, 29(5): 162-168.
[15] LIU Chen, WANG Kai, WANG Yefei, ZHOU Wensheng. Polymer/surfactant binary flooding in A oilfield with high temperature and high salinity [J]. Lithologic Reservoirs, 2017, 29(3): 152-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Xiongqi,CHEN Dongxia, ZHANG Jun. Concept and categorize of subtle reservoir and problems in its application[J]. Lithologic Reservoirs, 2007, 19(1): 1 -8 .
[2] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[3] YANG Qiulian, LI Aiqin, SUN Yanni, CUI Panfeng. Classification method for extra-low permeability reservoirs[J]. Lithologic Reservoirs, 2007, 19(4): 51 -56 .
[4] YANG Jie,WEI Pingsheng, LI Xiangbo. Basic concept, content and research method of petroleum seismogeology[J]. Lithologic Reservoirs, 2010, 22(1): 1 -6 .
[5] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[6] KUANG Hongwei, GAO Zhenzhong, WANG Zhengyun, WANG Xiaoguang. A type of specific subtle reservoir : Analysis on the origin of diagenetic trapped reservoirs and its significance for exploration in Xia 9 wellblock of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(1): 8 -14 .
[7] LI Guojun, ZHENG Rongcai, TANG Yulin, WANG Yang, TANG Kai. Sequence-based lithofacies and paleogeography of Lower Triassic Feixianguan Formation in northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2007, 19(4): 64 -70 .
[8] DAI Liming, LI Jianping, ZHOU Xinhuai, CUI Zhongguo, CHENG Jianchun. Depositional system of the Neogene shallow water delta in Bohai Sea area[J]. Lithologic Reservoirs, 2007, 19(4): 75 -81 .
[9] ZHU Xiaoyan, LI Aiqin, DUAN Xiaochen, TIAN Suiliang, LIU Meirong. Fine stratigraphic classification and correlation of Chang 3 reservoir of Yanchang Formation in Zhenbei Oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 82 -86 .
[10] FANG Chaohe, WANG Yifeng, ZHENG Dewen, GE Zhixin. Maceral and petrology of Lower Tertiary source rock in Qintong Sag, Subei Basin[J]. Lithologic Reservoirs, 2007, 19(4): 87 -90 .
TRENDMD: